Label placement by maximum independent set in rectangles

被引:138
作者
Agarwal, PK
van Kreveld, M
Suri, S
机构
[1] Duke Univ, Dept Comp Sci, Durham, NC 27708 USA
[2] Univ Utrecht, Dept Comp Sci, NL-3508 TB Utrecht, Netherlands
[3] Washington Univ, Dept Comp Sci, St Louis, MO 63130 USA
来源
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS | 1998年 / 11卷 / 3-4期
关键词
D O I
10.1016/S0925-7721(98)00028-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motivated by the problem of labeling maps, we investigate the problem of computing a large non-intersecting subset in a set of n rectangles in the plane. Our results are as follows. In O(n log n) time, we can find an O(log n)factor approximation of the maximum subset in a set of n arbitrary axis-parallel rectangles in the plane. If all rectangles have unit height, we can find a 2-approximation in O(n log n) time. Extending this result, we obtain a (1 + 1/k)-approximation in time O(n log n + n(2k-1)) time, for any integer k greater than or equal to 1. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:209 / 218
页数:10
相关论文
共 15 条
[1]  
Bellare M., 1994, Proceedings of the Twenty-Sixth Annual ACM Symposium on the Theory of Computing, P184, DOI 10.1145/195058.195129
[2]  
Christensen J., 1997, Proceedings of the Thirteenth Annual Symposium on Computational Geometry, P415, DOI 10.1145/262839.263039
[3]  
Doddi S, 1997, PROCEEDINGS OF THE EIGHTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P148
[4]   A RULE-BASED SYSTEM FOR DENSE-MAP NAME PLACEMENT [J].
DOERSCHLER, JS ;
FREEMAN, H .
COMMUNICATIONS OF THE ACM, 1992, 35 (01) :68-79
[5]  
Formann M, 1991, P 7 ANN ACM S COMP G, P281
[6]   OPTIMAL PACKING AND COVERING IN THE PLANE ARE NP-COMPLETE [J].
FOWLER, RJ ;
PATERSON, MS ;
TANIMOTO, SL .
INFORMATION PROCESSING LETTERS, 1981, 12 (03) :133-137
[7]  
Freeman H., 1991, GEOGRAPHICAL INFORM, P445
[8]   APPROXIMATION SCHEMES FOR COVERING AND PACKING PROBLEMS IN IMAGE-PROCESSING AND VLSI [J].
HOCHBAUM, DS ;
MAASS, W .
JOURNAL OF THE ACM, 1985, 32 (01) :130-136
[9]   FINDING THE CONNECTED COMPONENTS AND A MAXIMUM CLIQUE OF AN INTERSECTION GRAPH OF RECTANGLES IN THE PLANE [J].
IMAI, H ;
ASANO, T .
JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 1983, 4 (04) :310-323
[10]   SIMPLE HEURISTICS FOR UNIT DISK GRAPHS [J].
MARATHE, MV ;
BREU, H ;
HUNT, HB ;
RAVI, SS ;
ROSENKRANTZ, DJ .
NETWORKS, 1995, 25 (02) :59-68