A Monte Carlo simulation study on partially adaptive estimators of linear regression models

被引:8
|
作者
Kantar, Yeliz Mert [1 ]
Usta, Ilhan [1 ]
Acitas, Sukru [1 ]
机构
[1] Anadolu Univ, Dept Stat, TR-26470 Eskisehir, Turkey
关键词
linear regression model; non-normal error terms; partially adaptive estimator; sandwich estimator; Monte Carlo simulation; JACKKNIFE; ROBUST;
D O I
10.1080/02664763.2010.516389
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper presents a comprehensive comparison of well-known partially adaptive estimators (PAEs) in terms of efficiency in estimating regression parameters. The aim is to identify the best estimators of regression parameters when error terms follow from normal, Laplace, Student's t, normal mixture, lognormal and gamma distribution via the Monte Carlo simulation. In the results of the simulation, efficient PAEs are determined in the case of symmetric leptokurtic and skewed leptokurtic regression error data. Additionally, these estimators are also compared in terms of regression applications. Regarding these applications, using certain standard error estimators, it is shown that PAEs can reduce the standard error of the slope parameter estimate relative to ordinary least squares.
引用
收藏
页码:1681 / 1699
页数:19
相关论文
共 50 条
  • [21] A comparison of Logit and Probit models using Monte Carlo simulation
    Ma, Jun
    Li, Congying
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 8963 - 8967
  • [22] Monte Carlo Simulation of Light Propagation in Human Tissue Models
    Wang, Z.
    Wang, L.
    Zhang, Y. T.
    Chen, X. D.
    2009 3RD INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING, VOLS 1-11, 2009, : 996 - +
  • [23] Maximum likelihood estimators in linear regression models with Ornstein-Uhlenbeck process
    Hongchang Hu
    Xiong Pan
    Lifeng Xu
    Journal of Inequalities and Applications, 2014
  • [24] Maximum likelihood estimators in linear regression models with Ornstein-Uhlenbeck process
    Hu, Hongchang
    Pan, Xiong
    Xu, Lifeng
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [25] Performance comparison of three different estimators for the Nakagami m parameter using Monte Carlo simulation
    Abdi, A
    Kaveh, M
    IEEE COMMUNICATIONS LETTERS, 2000, 4 (04) : 119 - 121
  • [26] Uncertainty Evaluation of Weibull Estimators through Monte Carlo Simulation: Applications for Crack Initiation Testing
    Park, Jae Phil
    Bahn, Chi Bum
    MATERIALS, 2016, 9 (07)
  • [27] Modified ridge regression parameters: A comparative Monte Carlo study
    Asar, Yasin
    Karaibrahimoglu, Adnan
    Genc, Asir
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2014, 43 (05): : 827 - 841
  • [28] Efficient system reliability analysis of soil slopes using multivariate adaptive regression splines-based Monte Carlo simulation
    Liu, Lei-Lei
    Cheng, Yung-Ming
    COMPUTERS AND GEOTECHNICS, 2016, 79 : 41 - 54
  • [29] Theoretical study on composite sampling and Monte Carlo simulation
    Gao, Z
    He, XW
    Li, YJ
    Zhao, J
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 1999, 20 (12): : 1853 - 1857
  • [30] Media mix modeling – A Monte Carlo simulation study
    Liu Y.
    Laguna J.
    Wright M.
    He H.
    Journal of Marketing Analytics, 2014, 2 (3) : 173 - 186