A Monte Carlo simulation study on partially adaptive estimators of linear regression models

被引:7
|
作者
Kantar, Yeliz Mert [1 ]
Usta, Ilhan [1 ]
Acitas, Sukru [1 ]
机构
[1] Anadolu Univ, Dept Stat, TR-26470 Eskisehir, Turkey
关键词
linear regression model; non-normal error terms; partially adaptive estimator; sandwich estimator; Monte Carlo simulation; JACKKNIFE; ROBUST;
D O I
10.1080/02664763.2010.516389
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper presents a comprehensive comparison of well-known partially adaptive estimators (PAEs) in terms of efficiency in estimating regression parameters. The aim is to identify the best estimators of regression parameters when error terms follow from normal, Laplace, Student's t, normal mixture, lognormal and gamma distribution via the Monte Carlo simulation. In the results of the simulation, efficient PAEs are determined in the case of symmetric leptokurtic and skewed leptokurtic regression error data. Additionally, these estimators are also compared in terms of regression applications. Regarding these applications, using certain standard error estimators, it is shown that PAEs can reduce the standard error of the slope parameter estimate relative to ordinary least squares.
引用
收藏
页码:1681 / 1699
页数:19
相关论文
共 50 条
  • [1] Partial unit root and linear spurious regression: A Monte Carlo simulation study
    Zhang, Lingxiang
    ECONOMICS LETTERS, 2013, 118 (01) : 189 - 191
  • [2] New ridge estimators in the inverse Gaussian regression: Monte Carlo simulation and application to chemical data
    Amin, Muhammad
    Qasim, Muhammad
    Afzal, Saima
    Naveed, Khalid
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (10) : 6170 - 6187
  • [3] The Efficiency of Ridge Estimations for Multicollinearity Multiple Linear Regression: A Monte-Carlo Simulation-Based Study
    Thaithanan, Jeeraporn
    Wanishsakpong, Wandee
    Panityakul, Thammarat
    Prangchumpol, Dulyawit
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2021, 16 (04): : 1721 - 1727
  • [4] Comparison of Asymptotically Unbiased Extreme Value Index estimators: a Monte Carlo Simulation Study
    Caeiro, Frederico
    Gomes, M. Ivette
    INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2014 (ICCMSE 2014), 2014, 1618 : 551 - 554
  • [5] On some two parameter estimators for the linear regression models with correlated predictors: simulation and application
    Khan, Muhammad Shakir
    Ali, Amjad
    Suhail, Muhammad
    Kibria, B. M. Golam
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024,
  • [6] TWO-STAGE QUANTILE REGRESSION FOR DYNAMIC PANEL DATA MODELS WITH FIXED EFFECTS: MONTE CARLO SIMULATION STUDY
    Abdel-Aziz, Alaa A.
    Afify, Hossameldin A.
    ADVANCES AND APPLICATIONS IN STATISTICS, 2019, 54 (01) : 21 - 30
  • [7] Rank and Linear Correlation Differences in Monte Carlo Simulation
    Agahi, Maryam
    Kim, David S.
    ASCE-ASME JOURNAL OF RISK AND UNCERTAINTY IN ENGINEERING SYSTEMS PART A-CIVIL ENGINEERING, 2021, 7 (01):
  • [8] MONTE CARLO SIMULATION WITH BOOSTING REGRESSION FOR PRICING AMERICAN OPTION
    Su, Xiaoshan
    Bai, Manying
    ICIM'2016: PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON INDUSTRIAL MANAGEMENT, 2016, : 446 - 452
  • [9] A Monte Carlo test for variance homogeneity in linear models
    Piepho, HP
    BIOMETRICAL JOURNAL, 1996, 38 (04) : 461 - 473
  • [10] EVALUATION OF VARIANCE ESTIMATORS FOR THE CONCENTRATION AND HEALTH ACHIEVEMENT INDICES: A MONTE CARLO SIMULATION
    Chen, Zhuo
    Roy, Kakoli
    Crawford, Carol A. Gotway
    HEALTH ECONOMICS, 2012, 21 (11) : 1375 - 1381