A simple and scalable approach to hollow silicon nanotube (h-SiNT) anode architectures of superior electrochemical stability and reversible capacity

被引:44
作者
Epur, Rigved [1 ]
Hanumantha, Prashanth Jampani [2 ]
Datta, Moni K. [2 ]
Hong, Daeho [2 ]
Gattu, Bharat [3 ]
Kumta, Prashant N. [1 ,2 ,3 ,4 ,5 ]
机构
[1] Univ Pittsburgh, Dept Mech Engn & Mat Sci MEMS, Pittsburgh, PA 15261 USA
[2] Univ Pittsburgh, Dept Bioengn, Pittsburgh, PA 15261 USA
[3] Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15261 USA
[4] Univ Pittsburgh, Ctr Complex Engn Multifunct Mat CCEMM, Pittsburgh, PA 15261 USA
[5] Univ Pittsburgh, McGowan Inst Regenerat Med, Dept Oral Biol, Pittsburgh, PA 15261 USA
基金
美国国家科学基金会;
关键词
LIPF6-BASED ELECTROLYTES; SCALE SYNTHESIS; BATTERY ANODES; ION BATTERIES; PERFORMANCE; ADDITIVES; CARBONATE; GRAPHITE; NANOWIRES;
D O I
10.1039/c5ta00961h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Strain engineered unique architectures of silicon nanotubes have garnered tremendous attention as high capacity and stable lithium-ion battery (LIB) anodes. However, the expensive nature of the hitherto synthesis techniques used to produce the silicon nanotubes combined with the inferior yield and poor loading densities have rendered these unique morphologies unattractive for commercial LIB systems. In this study, we report for the first time, a simple, facile, and more importantly, recyclable sacrificial template based approach involving magnesium oxide (MgO) nanorods for producing scalable quantities of hollow silicon nanotubes (h-SiNTs) architectures. Electrodes fabricated from these h-SiNTs derived from this novel scalable approach exhibit equitable loadings and reversible capacities in excess of 1000 mA h g(-1) at a high current density of 2 A g(-1) for nearly 400 cycles, combined with a very low fade rate of only 0.067% loss per cycle. The high capacity, good current rate characteristics combined with excellent charge-transfer kinetics as well as the long cycle life of these engineered h-SiNTs render this approach viable for industry scale while also boding promise for practical applications.
引用
收藏
页码:11117 / 11129
页数:13
相关论文
共 34 条
[1]   A new large - Scale synthesis of magnesium oxide nanowires: Structural and antibacterial properties [J].
Al-Hazmi, Faten ;
Alnowaiser, Fowzia ;
Al-Ghamdi, A. A. ;
Al-Ghamdi, Attieh A. ;
Aly, M. M. ;
Al-Tuwirqi, Reem M. ;
El-Tantawy, Farid .
SUPERLATTICES AND MICROSTRUCTURES, 2012, 52 (02) :200-209
[2]   THE SURFACE-CHEMISTRY OF LITHIUM ELECTRODES IN ALKYL CARBONATE SOLUTIONS [J].
AURBACH, D ;
EINELY, Y ;
ZABAN, A .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1994, 141 (01) :L1-L3
[3]   Failure and stabilization mechanisms of graphite electrodes [J].
Aurbach, D ;
Levi, MD ;
Levi, E ;
Schechter, A .
JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (12) :2195-2206
[4]   A template-free, thermal decomposition method to synthesize mesoporous MgO with a nanocrystalline framework and its application in carbon dioxide adsorption [J].
Bian, Shao-Wei ;
Baltrusaitis, Jonas ;
Galhotra, Pragati ;
Grassian, Vicki H. .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (39) :8705-8710
[5]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[6]   Crystalline-Amorphous Core-Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes [J].
Cui, Li-Feng ;
Ruffo, Riccardo ;
Chan, Candace K. ;
Peng, Hailin ;
Cui, Yi .
NANO LETTERS, 2009, 9 (01) :491-495
[7]   Amorphous silicon-carbon based nano-scale thin film anode materials for lithium ion batteries [J].
Datta, Moni Kanchan ;
Maranchi, Jeffrey ;
Chung, Sung Jae ;
Epur, Rigved ;
Kadakia, Karan ;
Jampani, Prashanth ;
Kumta, Prashant N. .
ELECTROCHIMICA ACTA, 2011, 56 (13) :4717-4723
[8]   Synthesis and Extreme Rate Capability of Si-Al-C-N Functionalized Carbon Nanotube Spray-on Coatings as Li-Ion Battery Electrode [J].
David, Lamuel ;
Asok, Deepu ;
Singh, Gurpreet .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (18) :16056-16064
[9]   A simple facile approach to large scale synthesis of high specific surface area silicon nanoparticles [J].
Epur, Rigved ;
Minardi, Luke ;
Datta, Moni K. ;
Chung, Sung Jae ;
Kumta, Prashant N. .
JOURNAL OF SOLID STATE CHEMISTRY, 2013, 208 :93-98
[10]   Nanoscale engineered electrochemically active silicon-CNT heterostructures-novel anodes for Li-ion application [J].
Epur, Rigved ;
Datta, Moni K. ;
Kumta, Prashant N. .
ELECTROCHIMICA ACTA, 2012, 85 :680-684