Synthesis of Ni(OH)2@Ni/RGO nanocomposite: formulation of one dimensional array

被引:2
作者
Krishna, Rahul [1 ]
Dias, Catarina [2 ,3 ,4 ]
Ventura, Joao [2 ,3 ,4 ]
Titus, Elby [1 ]
机构
[1] Univ Aveiro, Dept Mech Engn, Ctr Mech Technol & Automat TEMA, P-3810193 Aveiro, Portugal
[2] Univ Porto, IFIMUP, P-4169007 Oporto, Portugal
[3] Univ Porto, IN Inst Nanosci & Nanotechnol, P-4169007 Oporto, Portugal
[4] Univ Porto, Dept Phys & Astron, Fac Sci, P-4169007 Oporto, Portugal
关键词
Ni NPs; reduced graphene oxide; Ni(OH)(2); one dimensional; REDUCED GRAPHENE OXIDE; MAGNETIC NANOPARTICLES; ROOM-TEMPERATURE; FABRICATION; REDUCTION; HYDRAZINE;
D O I
10.1016/j.matpr.2015.04.046
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A highly efficient process was developed to synthesize one dimensional (1D) array of Ni(OH)(2) on Ni/RGO nanocomposite by a two step method. In the first step, Ni nanoparticles (NPs) were decorated on reduced graphene oxide (RGO) by the simultaneous reduction of Ni2+ ions and graphene oxide (GO) under reduced conditions. In the next step, one dimension (1D) arrays of Ni(OH)(2) were uniformly grown on Ni/RGO by the precipitation of Ni2+ ions using urea and NaOH. The reduction of GO, formation of Ni/RGO and Ni(OH)(2)@Ni/RGO nanocomposite were verified by various techniques. The magnetic hysteresis loop of as-synthesized nanocomposite Ni(OH)(2)@ Ni/RGO exhibits the typical ferromagnetic properties with a saturation magnetization of 4.8 emu/g, which holds a broad prospect of 1D array on graphene for many applications. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:407 / 413
页数:7
相关论文
共 36 条
[1]  
[Anonymous], 2004, Organic Chemistry
[2]   Stable Ni Nanoparticle-Reduced Graphene Oxide Composites for the Reduction of Highly Toxic Aqueous Cr(VI) at Room Temperature [J].
Bhowmik, Koushik ;
Mukherjee, Arnab ;
Mishra, Manish Kr ;
De, Goutam .
LANGMUIR, 2014, 30 (11) :3209-3216
[3]   A systematic study of electronic structure from graphene to graphane [J].
Chandrachud, Prachi ;
Pujari, Bhalchandra S. ;
Haldar, Soumyajyoti ;
Sanyal, Biplab ;
Kanhere, D. G. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (46)
[4]   Preparation of graphene film decorated TiO2 nano-tube array photoelectrode and its enhanced visible light photocatalytic mechanism [J].
Cheng, Xiuwen ;
Liu, Huiling ;
Chen, Qinghua ;
Li, Junjing ;
Wang, Pu .
CARBON, 2014, 66 :450-458
[5]   The chemistry of graphene oxide [J].
Dreyer, Daniel R. ;
Park, Sungjin ;
Bielawski, Christopher W. ;
Ruoff, Rodney S. .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (01) :228-240
[6]   Facile Synthesis of Graphene Nanosheets via Fe Reduction of Exfoliated Graphite Oxide [J].
Fan, Zhuang-Jun ;
Kai, Wang ;
Yan, Jun ;
Wei, Tong ;
Zhi, Lin-Jie ;
Feng, Jing ;
Ren, Yue-ming ;
Song, Li-Ping ;
Wei, Fei .
ACS NANO, 2011, 5 (01) :191-198
[7]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[8]   Bottom-Up Graphene-Nanoribbon Fabrication Reveals Chiral Edges and Enantioselectivity [J].
Han, Patrick ;
Akagi, Kazuto ;
Canova, Filippo Federici ;
Mutoh, Hirotaka ;
Shiraki, Susumu ;
Iwaya, Katsuya ;
Weiss, Paul S. ;
Asao, Naoki ;
Hitosugi, Taro .
ACS NANO, 2014, 8 (09) :9181-9187
[9]   Magnetic properties of graphitically encapsulated nickel nanocrystals [J].
Hwang, JH ;
Dravid, VP ;
Teng, MH ;
Host, JJ ;
Elliott, BR ;
Johnson, DL ;
Mason, TO .
JOURNAL OF MATERIALS RESEARCH, 1997, 12 (04) :1076-1082
[10]   Rectification in three-terminal graphene junctions [J].
Jacobsen, A. ;
Shorubalko, I. ;
Maag, L. ;
Sennhauser, U. ;
Ensslin, K. .
APPLIED PHYSICS LETTERS, 2010, 97 (03)