On the large time decay of asymmetric flows in homogeneous Sobolev spaces

被引:11
作者
Guterres, R. H. [1 ]
Melo, W. G. [2 ]
Nunes, J. R. [3 ]
Perusato, C. F. [1 ]
机构
[1] Univ Fed Rio Grande do Sul, Dept Matemat Pura & Aplicada, BR-91509900 Porto Alegre, RS, Brazil
[2] Univ Fed Sergipe, Dept Matemat, BR-49100000 Sao Cristovao, SE, Brazil
[3] Univ Fed Rio Grande, Inst Matemat Estat & Fis, BR-96203900 Rio Grande, RS, Brazil
关键词
Micropolar fluid equations; Long-time behavior; Decay rates in homogeneous Sobolev spaces; MICROPOLAR FLUID SYSTEM; GLOBAL WELL-POSEDNESS; EXISTENCE THEOREM; UNIQUENESS;
D O I
10.1016/j.jmaa.2018.10.065
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the large time decay of the micropolar fluid equations on (H)over dot(s)(R-n) (where n = 2,3 and s >= 0) are studied. We show, for each s >= 0, that t(s/2) parallel to(u, w)(center dot, t)parallel to(s)((H)over dot)((Rn)) -> 0 as t -> infinity for Leray global solutions with arbitrary initial data in L-2(R-n). When the vortex viscosity is present, we obtain a (faster) decay for the micro-rotational field: parallel to w(center dot, t)parallel to(s)(n)((H)over dot)((R)()) = o(t(s+1/2)). Some related results are also included. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:88 / 101
页数:14
相关论文
共 32 条
[1]   Non-uniform decay of MHD equations with and without magnetic diffusion [J].
Agapito, Ruben ;
Schonbek, Maria .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (10-12) :1791-1812
[2]   Long time decay to the Leray solution of the two-dimensional Navier-Stokes equations [J].
Benameur, J. ;
Selmi, R. .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2012, 44 :1001-1019
[3]  
Boldrini J.L., 2010, Ann. Univ. Ferrara Sez. VII Sci. Mat, V56, P37, DOI DOI 10.1007/S11565-010-0094-0
[4]   Exponential stability for magneto-micropolar fluids [J].
Braz e Silva, P. ;
Friz, L. ;
Rojas-Medar, M. A. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 143 :211-223
[5]  
Cannone M., 2006, BANACH CTR PUBL, V74, P59
[6]   Global well-posedness for the micropolar fluid system in critical Besov spaces [J].
Chen, Qionglei ;
Miao, Changxing .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (03) :2698-2724
[7]   ASYMPTOTIC PROFILES OF SOLUTIONS TO THE 2D VISCOUS INCOMPRESSIBLE MICROPOLAR FLUID FLOWS [J].
Dong, Bo-Qing ;
Chen, Zhi-Min .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 23 (03) :765-784
[8]   Global well-posedness and large-time decay for the 2D micropolar equations [J].
Dong, Bo-Qing ;
Li, Jingna ;
Wu, Jiahong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (06) :3488-3523
[9]  
ERINGEN AC, 1966, J MATH MECH, V16, P1
[10]  
Friedman A., 1969, Partial differential equations