Accurate prediction of complex traits for individuals and offspring from parents using a simple, rapid, and efficient method for gene-based breeding in cotton and maize

被引:6
作者
Liu, Yun-Hua [1 ]
Zhang, Meiping [1 ]
Scheuring, Chantel F. [1 ]
Cilkiz, Mustafa [1 ]
Sze, Sing-Hoi [2 ,3 ]
Smith, C. Wayne [1 ]
Murray, Seth C. [1 ]
Xu, Wenwei [4 ]
Zhang, Hong-Bin [1 ]
机构
[1] Texas A&M Univ, Dept Soil & Crop Sci, College Stn, TX 77843 USA
[2] Texas A&M Univ, Dept Comp Sci & Engn, College Stn, TX 77843 USA
[3] Texas A&M Univ, Dept Biochem & Biophys, College Stn, TX 77843 USA
[4] Texas A&M AgriLife Res, Lubbock, TX 79403 USA
基金
美国食品与农业研究所;
关键词
Quantitative trait; Phenotype prediction; Favorable allele; Fiber length; Grain yield; Cotton; Maize; GENOMIC SELECTION; ENABLED PREDICTION; REGRESSION; VALUES; POPULATIONS; PLANT;
D O I
10.1016/j.plantsci.2021.111153
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Accurate, simple, rapid, and inexpensive prediction of complex traits controlled by numerous genes is paramount to enhanced plant breeding, animal breeding, and human medicine. Here we report a novel method that enables accurate, simple, and rapid prediction of complex traits of individuals or offspring from parents based on the number of favorable alleles (NFAs) of the genes controlling the objective traits. The NFAs of 226 cotton fiber length (GFL) genes and nine maize hybrid grain yield related (ZmF1GY) genes were directly used to predict cotton fiber lengths of individual plants and maize grain yields of F-1 hybrids from parents, respectively, using prediction model-based methods as controls. The NFAs of the 226 GFL genes predicted cotton fiber lengths at an accuracy of 0.85, as the model methods and outperforming genomic prediction by 82 % - 170 %. The NFAs of the nine ZmF1GY genes predicted grain yields of maize hybrids from parents at an accuracy of 0.80, outperforming genomic prediction by 67 %. Moreover, the prediction accuracies of these traits were consistent across years, environments, and eco-agricultural systems. Importantly, the accurate prediction of these traits directly using the NFAs of the genes allows breeding to be performed in greenhouse, phytotron, or off-season, without the need of the model training and validation steps essential and costly for model-based genomic or genic prediction. Therefore, this new method dramatically outperforms the current model-based genomic methods used for phenotype prediction and streamlines the process of breeding, thus promising to substantially enhance current plant and animal breeding.
引用
收藏
页数:11
相关论文
共 35 条
[1]   Fitting Linear Mixed-Effects Models Using lme4 [J].
Bates, Douglas ;
Maechler, Martin ;
Bolker, Benjamin M. ;
Walker, Steven C. .
JOURNAL OF STATISTICAL SOFTWARE, 2015, 67 (01) :1-48
[2]   Genetic Gains in Grain Yield Through Genomic Selection in Eight Bi-parental Maize Populations under Drought Stress [J].
Beyene, Yoseph ;
Semagn, Kassa ;
Mugo, Stephen ;
Tarekegne, Amsal ;
Babu, Raman ;
Meisel, Barbara ;
Sehabiague, Pierre ;
Makumbi, Dan ;
Magorokosho, Cosmos ;
Oikeh, Sylvester ;
Gakunga, John ;
Vargas, Mateo ;
Olsen, Michael ;
Prasanna, Boddupalli M. ;
Banziger, Marianne ;
Crossa, Jose .
CROP SCIENCE, 2015, 55 (01) :154-163
[3]   Genomic Prediction in Maize Breeding Populations with Genotyping-by-Sequencing [J].
Crossa, Jose ;
Beyene, Yoseph ;
Kassa, Semagn ;
Perez, Paulino ;
Hickey, John M. ;
Chen, Charles ;
de los Campos, Gustavo ;
Burgueno, Juan ;
Windhausen, Vanessa S. ;
Buckler, Ed ;
Jannink, Jean-Luc ;
Lopez Cruz, Marco A. ;
Babu, Raman .
G3-GENES GENOMES GENETICS, 2013, 3 (11) :1903-1926
[4]   Prediction of Genetic Values of Quantitative Traits in Plant Breeding Using Pedigree and Molecular Markers [J].
Crossa, Jose ;
de los Campos, Gustavo ;
Perez, Paulino ;
Gianola, Daniel ;
Burgueno, Juan ;
Luis Araus, Jose ;
Makumbi, Dan ;
Singh, Ravi P. ;
Dreisigacker, Susanne ;
Yan, Jianbing ;
Arief, Vivi ;
Banziger, Marianne ;
Braun, Hans-Joachim .
GENETICS, 2010, 186 (02) :713-U406
[5]   Accuracy of pedigree and genomic predictions of carcass and novel meat quality traits in multi-breed sheep data assessed by cross-validation [J].
Daetwyler, Hans D. ;
Swan, Andrew A. ;
van der Werf, Julius H. J. ;
Hayes, Ben J. .
GENETICS SELECTION EVOLUTION, 2012, 44
[6]   Metabolic prediction of important agronomic traits in hybrid rice (Oryza sativa L.) [J].
Dan, Zhiwu ;
Hu, Jun ;
Zhou, Wei ;
Yao, Guoxin ;
Zhu, Renshan ;
Zhu, Yingguo ;
Huang, Wenchao .
SCIENTIFIC REPORTS, 2016, 6
[7]   Whole-Genome Regression and Prediction Methods Applied to Plant and Animal Breeding [J].
de los Campos, Gustavo ;
Hickey, John M. ;
Pong-Wong, Ricardo ;
Daetwyler, Hans D. ;
Calus, Mario P. L. .
GENETICS, 2013, 193 (02) :327-+
[8]   Predicting genetic predisposition in humans: the promise of whole-genome markers [J].
de los Campos, Gustavo ;
Gianola, Daniel ;
Allison, David B. .
NATURE REVIEWS GENETICS, 2010, 11 (12) :880-886
[9]   Semi-parametric genomic-enabled prediction of genetic values using reproducing kernel Hilbert spaces methods [J].
de los Campos, Gustavo ;
Gianola, Daniel ;
Rosa, Guilherme J. M. ;
Weigel, Kent A. ;
Crossa, Jose .
GENETICS RESEARCH, 2010, 92 (04) :295-308
[10]   Genomic selection: genome-wide prediction in plant improvement [J].
Desta, Zeratsion Abera ;
Ortiz, Rodomiro .
TRENDS IN PLANT SCIENCE, 2014, 19 (09) :592-601