Semi-classical wavefront set and Fourier integral operators

被引:21
作者
Alexandrova, Ivana [1 ]
机构
[1] E Carolina Univ, Dept Math, Greenville, NC 27858 USA
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2008年 / 60卷 / 02期
关键词
D O I
10.4153/CJM-2008-011-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Here we define and prove some properties of the semi-classical wavefront set. We also define and study semi-classical Fourier integral operators and prove a generalization of Egorov's theorem to manifolds of different dimensions.
引用
收藏
页码:241 / 263
页数:23
相关论文
共 10 条
[1]   Structure of the semi-classical amplitude for general scattering relations [J].
Alexandrova, I .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2005, 30 (10) :1505-1535
[2]  
Alexandrova I, 2006, ASYMPTOTIC ANAL, V50, P13
[3]  
[Anonymous], 1985, ANAL LINEAR PARTIAL
[4]  
[Anonymous], 1987, PROGR MATH
[5]  
DOZIAS S, 1994, THESIS U PARIS NORD
[6]  
Duistermaat JJ., 1996, PROGR MATH, V130
[7]  
Gerard C, 1988, MEM SOC MATH FRANCE
[8]  
Grigis A., 1994, LONDON MATH SOC LECT, V196
[9]  
Martinez A, 2002, An introduction to semiclassical and microlocal analysis
[10]   Quantum monodromy and semi-classical trace formula [J].
Sjöstrand, J ;
Zworski, M .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2002, 81 (01) :1-33