Bounds on the k-domination number of a graph

被引:22
作者
DeLaVina, Ermelinda [1 ]
Goddard, Wayne [2 ]
Henning, Michael A. [3 ]
Pepper, Ryan [1 ]
Vaughan, Emil R. [4 ]
机构
[1] Univ Houston Downtown, Houston, TX 77002 USA
[2] Clemson Univ, Clemson, SC 29631 USA
[3] Univ Johannesburg, Johannesburg, South Africa
[4] Univ London, London WC1E 7HU, England
基金
新加坡国家研究基金会;
关键词
k-domination; Matching number; Independence number; Graph;
D O I
10.1016/j.aml.2011.01.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The k-domination number of a graph is the cardinality of a smallest set of vertices such that every vertex not in the set is adjacent to at least k vertices of the set. We prove two bounds on the k-domination number of a graph, inspired by two conjectures of the computer program Graffiti.pc. In particular, we show that for ally graph with minimum degree at least 2k - 1, the k-domination number is at most the matching number. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:996 / 998
页数:3
相关论文
共 11 条
[1]  
[Anonymous], 2010, C NUMER
[2]  
Bondy J.A., 2008, GTM
[3]  
Caro Y., 1990, INT J MATH MATH SCI, V13, P205, DOI [10.1155/S016117129000031X, DOI 10.1155/S016117129000031X, 10.1155S016117129000031X////]
[4]  
COCKAYNE EJ, 1978, LECT NOTES MATH, V642, P141, DOI DOI 10.1007/BFB0070371
[5]  
DELAVINA E, WRITTEN WALL, V2
[6]   On k-domination and minimum degree in graphs [J].
Favaron, Odile ;
Hansberg, Adriana ;
Volkmann, Lutz .
JOURNAL OF GRAPH THEORY, 2008, 57 (01) :33-40
[7]  
Fink J.F., 1985, Graph Theory with Applications to Algorithms and Computer Science, P283
[8]  
Fujisawa J, 2008, AUSTRALAS J COMB, V40, P265
[9]  
Hansberg A., 2009, THESIS RWTH AACHEN U
[10]  
Pepper R., 2010, C NUMER, V206, P65