Highly robust model of transcription regulator activity predicts breast cancer overall survival

被引:3
作者
Dong, Chuanpeng [1 ,2 ]
Liu, Jiannan [2 ]
Chen, Steven X. [1 ]
Dong, Tianhan [3 ]
Jiang, Guanglong [1 ,2 ]
Wang, Yue [1 ]
Wu, Huanmei [2 ]
Reiter, Jill L. [1 ]
Liu, Yunlong [1 ,2 ]
机构
[1] Indiana Univ Sch Med, Dept Med & Mol Genet, Ctr Computat Biol & Bioinformat, Indianapolis, IN 46202 USA
[2] Indiana Univ Purdue Univ, Sch Informat & Comp, Dept BioHlth Informat, Indianapolis, IN 46202 USA
[3] Indiana Univ Sch Med, Dept Pharmacol & Toxicol, Indianapolis, IN 46202 USA
关键词
Breast cancer; Transcription regulators; Prognostic model; GENE-EXPRESSION PROFILES; NONCODING RNAS; SIGNATURES; PROLIFERATION; OUTCOMES; BENEFIT; ER;
D O I
10.1186/s12920-020-0688-z
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Background While several multigene signatures are available for predicting breast cancer prognosis, particularly in early stage disease, effective molecular indicators are needed, especially for triple-negative carcinomas, to improve treatments and predict diagnostic outcomes. The objective of this study was to identify transcriptional regulatory networks to better understand mechanisms giving rise to breast cancer development and to incorporate this information into a model for predicting clinical outcomes. Methods Gene expression profiles from 1097 breast cancer patients were retrieved from The Cancer Genome Atlas (TCGA). Breast cancer-specific transcription regulatory information was identified by considering the binding site information from ENCODE and the top co-expressed targets in TCGA using a nonlinear approach. We then used this information to predict breast cancer patient survival outcome. Result We built a multiple regulator-based prediction model for breast cancer. This model was validated in more than 5000 breast cancer patients from the Gene Expression Omnibus (GEO) databases. We demonstrated our regulator model was significantly associated with clinical stage and that cell cycle and DNA replication related pathways were significantly enriched in high regulator risk patients. Conclusion Our findings demonstrate that transcriptional regulator activities can predict patient survival. This finding provides additional biological insights into the mechanisms of breast cancer progression.
引用
收藏
页数:10
相关论文
共 39 条
[1]  
Aibar S, 2017, NAT METHODS, V14, P1083, DOI [10.1038/NMETH.4463, 10.1038/nmeth.4463]
[2]   NCBI GEO: archive for functional genomics data sets-update [J].
Barrett, Tanya ;
Wilhite, Stephen E. ;
Ledoux, Pierre ;
Evangelista, Carlos ;
Kim, Irene F. ;
Tomashevsky, Maxim ;
Marshall, Kimberly A. ;
Phillippy, Katherine H. ;
Sherman, Patti M. ;
Holko, Michelle ;
Yefanov, Andrey ;
Lee, Hyeseung ;
Zhang, Naigong ;
Robertson, Cynthia L. ;
Serova, Nadezhda ;
Davis, Sean ;
Soboleva, Alexandra .
NUCLEIC ACIDS RESEARCH, 2013, 41 (D1) :D991-D995
[3]   The THAP-zinc finger protein THAP1 regulates endothelial cell proliferation through modulation of pRB/E2F cell-cycle target genes [J].
Cayrol, Corinne ;
Lacroix, Chrystelle ;
Mathe, Catherine ;
Ecochard, Vincent ;
Ceribelli, Michele ;
Loreau, Emilie ;
Lazar, Vladimir ;
Dessen, Philippe ;
Mantovani, Roberto ;
Aguilar, Luc ;
Girard, Jean-Philippe .
BLOOD, 2007, 109 (02) :584-594
[4]   CHD7 Expression Predicts Survival Outcomes in Patients with Resected Pancreatic Cancer [J].
Colbert, Lauren E. ;
Petrova, Aleksandra V. ;
Fisher, Sarah B. ;
Pantazides, Brooke G. ;
Madden, Matthew Z. ;
Hardy, Claire W. ;
Warren, Matthew D. ;
Pan, Yunfeng ;
Nagaraju, Ganji P. ;
Liu, Elaine A. ;
Saka, Burcu ;
Hall, William A. ;
Shelton, Joseph W. ;
Gandhi, Khanjan ;
Pauly, Rini ;
Kowalski, Jeanne ;
Kooby, David A. ;
El-Rayes, Bassel F. ;
Staley, Charles A., III ;
Adsay, N. Volkan ;
Curran, Walter J., Jr. ;
Landry, Jerome C. ;
Maithel, Shishir K. ;
Yu, David S. .
CANCER RESEARCH, 2014, 74 (10) :2677-2687
[5]  
COX DR, 1972, J R STAT SOC B, V34, P187
[6]   Breast cancer statistics, 2017, racial disparity in mortality by state [J].
DeSantis, Carol E. ;
Ma, Jiemin ;
Sauer, Ann Goding ;
Newman, Lisa A. ;
Jemal, Ahmedin .
CA-A CANCER JOURNAL FOR CLINICIANS, 2017, 67 (06) :439-448
[7]   The ENCODE (ENCyclopedia of DNA elements) Project [J].
Feingold, EA ;
Good, PJ ;
Guyer, MS ;
Kamholz, S ;
Liefer, L ;
Wetterstrand, K ;
Collins, FS ;
Gingeras, TR ;
Kampa, D ;
Sekinger, EA ;
Cheng, J ;
Hirsch, H ;
Ghosh, S ;
Zhu, Z ;
Pate, S ;
Piccolboni, A ;
Yang, A ;
Tammana, H ;
Bekiranov, S ;
Kapranov, P ;
Harrison, R ;
Church, G ;
Struhl, K ;
Ren, B ;
Kim, TH ;
Barrera, LO ;
Qu, C ;
Van Calcar, S ;
Luna, R ;
Glass, CK ;
Rosenfeld, MG ;
Guigo, R ;
Antonarakis, SE ;
Birney, E ;
Brent, M ;
Pachter, L ;
Reymond, A ;
Dermitzakis, ET ;
Dewey, C ;
Keefe, D ;
Denoeud, F ;
Lagarde, J ;
Ashurst, J ;
Hubbard, T ;
Wesselink, JJ ;
Castelo, R ;
Eyras, E ;
Myers, RM ;
Sidow, A ;
Batzoglou, S .
SCIENCE, 2004, 306 (5696) :636-640
[8]   Genefu: an R/Bioconductor package for computation of gene expression-based signatures in breast cancer [J].
Gendoo, Deena M. A. ;
Ratanasirigulchai, Natchar ;
Schroeder, Markus S. ;
Pare, Laia ;
Parker, Joel S. ;
Prat, Aleix ;
Haibe-Kains, Benjamin .
BIOINFORMATICS, 2016, 32 (07) :1097-1099
[9]  
Ghahramani A, GENERATIVE ADVERSARI
[10]   The UCSC Cancer Genomics Browser: update 2015 [J].
Goldman, Mary ;
Craft, Brian ;
Swatloski, Teresa ;
Cline, Melissa ;
Morozova, Olena ;
Diekhans, Mark ;
Haussler, David ;
Zhu, Jingchun .
NUCLEIC ACIDS RESEARCH, 2015, 43 (D1) :D812-D817