Two-generator discrete subgroups of Isom(H2) containing orientation-reversing elements

被引:28
作者
Klimenko, E
Sakuma, M
机构
[1] Russian Acad Sci, Inst Math, Siberian Branch, Novosibirsk 630090, Russia
[2] Osaka Univ, Grad Sch Sci, Dept Math, Toyonaka, Osaka 560, Japan
关键词
extended triangle group; triangle group; unknotting tunnel;
D O I
10.1023/A:1005032526329
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f and g be elements of the isometry group Isom(H-2) of the hyperbolic plane H-2, and assume that one of them is orientation-reversing. We determine when the group [f, g] they generate is discrete; in particular, we obtain the classification of such groups. As an application to knot theory, we completely determine the tunnel number one Montesinos knots.
引用
收藏
页码:247 / 282
页数:36
相关论文
共 35 条
[1]  
[Anonymous], 1977, ERGEB MATH GRENZGEB
[2]  
Beardon A. F., 1983, GRADUATE TEXT MATH, V91
[3]   ON HEEGAARD DECOMPOSITIONS OF TORUS KNOT EXTERIORS AND RELATED SEIFERT FIBER SPACES [J].
BOILEAU, M ;
ROST, M ;
ZIESCHANG, H .
MATHEMATISCHE ANNALEN, 1988, 279 (03) :553-581
[4]   GENUS-2 HEEGAARD DECOMPOSITIONS OF SMALL SEIFERT MANIFOLDS [J].
BOILEAU, M ;
COLLINS, DJ ;
ZIESCHANG, H .
ANNALES DE L INSTITUT FOURIER, 1991, 41 (04) :1005-1024
[5]  
BROOKS R, 1981, ANN MATH STUD, V97, P65
[6]  
Burde Gerhard, 1985, KNOTS, V5
[7]  
Coxeter H. S. M., 1973, REGULAR POLYTOPES
[8]  
FINE B, 1995, LONDON MATH SOC LECT, V211, P205
[9]  
GARDINER FP, 1987, TEICHMULLER THEORY Q
[10]  
GEHRING FW, 1989, B AMS, V21