Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater

被引:629
作者
Ding, Li [1 ]
Li, Libo [1 ]
Liu, Yanchang [1 ]
Wu, Yi [1 ]
Lu, Zong [1 ]
Deng, Junjie [1 ]
Wei, Yanying [1 ]
Caro, Juergen [2 ]
Wang, Haihui [1 ]
机构
[1] South China Univ Technol, Sch Chem & Chem Engn, Guangzhou, Peoples R China
[2] Leibniz Univ Hannover, Inst Phys Chem & Electrochem, Hannover, Germany
基金
中国博士后科学基金;
关键词
GRAPHENE OXIDE MEMBRANES; MOLECULAR-MECHANICS; NANOFILTRATION; INTERCALATION; DESALINATION; DEHYDRATION; SELECTIVITY; SIMULATION; PRECISE; ENERGY;
D O I
10.1038/s41893-020-0474-0
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Two-dimensional lamellar membranes for water purification are promising but suffer from swelling that reduces their ion sieving performance in water. This study reports easy-to-fabricate, non-swelling MXene membranes prepared by the intercalation of Al3+ ions that could be scalable. Traditional ways of producing drinking water from groundwater, water recycling and water conservation are not sufficient. Seawater desalination would close the gap but the main technology used is thermally driven multi-flash distillation, which is energy consuming and not sustainable. Stacking two-dimensional (2D) nanomaterials into lamellar membranes is a promising technique in the pursuit of both high selectivity and permeance in water desalination. However, 2D membranes tend to swell in water, and increasing their stability in aqueous solution is still challenging. Here, we report non-swelling, MXene membranes prepared by the intercalation of Al3+ ions. Swelling is prevented by strong interactions between Al3+ and oxygen functional groups terminating at the MXene surface. These membranes show excellent non-swelling stability in aqueous solutions up to 400 h and possess high rejection of NaCl (similar to 89.5-99.6%) with fast water fluxes (similar to 1.1-8.5 l m(-2) h(-1)). Such membranes can be easily fabricated by simple filtration and ion-intercalating methods, which holds promise for their scalability.
引用
收藏
页码:296 / +
页数:10
相关论文
共 48 条
[1]  
Abraham J, 2017, NAT NANOTECHNOL, V12, P546, DOI [10.1038/nnano.2017.21, 10.1038/NNANO.2017.21]
[2]   Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2TX MXene) [J].
Alhabeb, Mohamed ;
Maleski, Kathleen ;
Anasori, Babak ;
Lelyukh, Pavel ;
Clark, Leah ;
Sin, Saleesha ;
Gogotsi, Yury .
CHEMISTRY OF MATERIALS, 2017, 29 (18) :7633-7644
[3]   2D metal carbides and nitrides (MXenes) for energy storage [J].
Anasori, Babak ;
Lukatskaya, Maria R. ;
Gogotsi, Yury .
NATURE REVIEWS MATERIALS, 2017, 2 (02)
[4]   Effect of surface termination on ion intercalation selectivity of bilayer Ti3C2T2 (T = F, O and OH) MXene [J].
Berdiyorov, Golibjon R. ;
Mahmoud, Khaled A. .
APPLIED SURFACE SCIENCE, 2017, 416 :725-730
[5]   GROMACS - A MESSAGE-PASSING PARALLEL MOLECULAR-DYNAMICS IMPLEMENTATION [J].
BERENDSEN, HJC ;
VANDERSPOEL, D ;
VANDRUNEN, R .
COMPUTER PHYSICS COMMUNICATIONS, 1995, 91 (1-3) :43-56
[6]   THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS [J].
BERENDSEN, HJC ;
GRIGERA, JR ;
STRAATSMA, TP .
JOURNAL OF PHYSICAL CHEMISTRY, 1987, 91 (24) :6269-6271
[7]   Ion sieving in graphene oxide membranes via cationic control of interlayer spacing [J].
Chen, Liang ;
Shi, Guosheng ;
Shen, Jie ;
Peng, Bingquan ;
Zhang, Bowu ;
Wang, Yuzhu ;
Bian, Fenggang ;
Wang, Jiajun ;
Li, Deyuan ;
Qian, Zhe ;
Xu, Gang ;
Liu, Gongping ;
Zeng, Jianrong ;
Zhang, Lijuan ;
Yang, Yizhou ;
Zhou, Guoquan ;
Wu, Minghong ;
Jin, Wanqin ;
Li, Jingye ;
Fang, Haiping .
NATURE, 2017, 550 (7676) :415-418
[8]   PARTICLE MESH EWALD - AN N.LOG(N) METHOD FOR EWALD SUMS IN LARGE SYSTEMS [J].
DARDEN, T ;
YORK, D ;
PEDERSEN, L .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (12) :10089-10092
[9]   MXene molecular sieving membranes for highly efficient gas separation [J].
Ding, Li ;
Wei, Yanying ;
Li, Libo ;
Zhang, Tao ;
Wang, Haihui ;
Xue, Jian ;
Ding, Liang-Xin ;
Wang, Suqing ;
Caro, Juergen ;
Gogotsi, Yury .
NATURE COMMUNICATIONS, 2018, 9
[10]   A Two-Dimensional Lamellar Membrane: MXene Nanosheet Stacks [J].
Ding, Li ;
Wei, Yanying ;
Wang, Yanjie ;
Chen, Hongbin ;
Caro, Juergen ;
Wang, Haihui .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (07) :1825-1829