State-Space Control of Nonlinear Systems Identified by ANARX and Neural Network based SANARX Models

被引:0
|
作者
Vassiljeva, K. [1 ]
Petlenkov, E. [1 ]
Belikov, J. [2 ]
机构
[1] Tallinn Univ Technol, Dept Comp Control, EE-19086 Tallinn, Estonia
[2] Tallinn Univ Technol, Inst Cybernet, EE-12618 Tallinn, Estonia
关键词
state-space control; nonlinear control systems; ANARX model; neural networks and dynamic feedback linearization; REALIZABILITY; DESIGN;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A state-space technique for control of nonlinear SISO systems identified by an Additive Nonlinear Autoregressive eXogenous (ANARX) model is presented. Two cases are shown. In the first case system model is given explicitly in the form of ANARX structure. In the second case controlled system is identified by Neural Network based Simplified Additive NARX (NN-SANARX) model linearized by dynamic feedback. The neural network based model is represented in the discrete-time state-space form. The effectiveness of the approach proposed in the paper is demonstrated on numerical examples with SISO and MIMO systems.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Identification of Mixed Linear/Nonlinear State-Space Models
    Lindsten, Fredrik
    Schon, Thomas B.
    49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 6377 - 6382
  • [42] Estimation methods for nonlinear state-space models in ecology
    Pedersen, M. W.
    Berg, C. W.
    Thygesen, U. H.
    Nielsen, A.
    Madsen, H.
    ECOLOGICAL MODELLING, 2011, 222 (08) : 1394 - 1400
  • [43] Hysteresis Identification Using Nonlinear State-Space Models
    Noel, J. P.
    Esfahani, A. F.
    Kerschen, G.
    Schoukens, J.
    NONLINEAR DYNAMICS, VOL 1, 34TH IMAC, 2016, : 323 - 338
  • [44] A new look at state-space models for neural data
    Paninski, Liam
    Ahmadian, Yashar
    Ferreira, Daniel Gil
    Koyama, Shinsuke
    Rad, Kamiar Rahnama
    Vidne, Michael
    Vogelstein, Joshua
    Wu, Wei
    JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2010, 29 (1-2) : 107 - 126
  • [45] A new look at state-space models for neural data
    Liam Paninski
    Yashar Ahmadian
    Daniel Gil Ferreira
    Shinsuke Koyama
    Kamiar Rahnama Rad
    Michael Vidne
    Joshua Vogelstein
    Wei Wu
    Journal of Computational Neuroscience, 2010, 29 : 107 - 126
  • [46] Offset-free state-space nonlinear predictive control for Wiener systems
    Lawrynczuk, Maciej
    Tatjewski, Piotr
    INFORMATION SCIENCES, 2020, 511 : 127 - 151
  • [47] Particle Filter based Neural Network Modeling of Nonlinear Systems for State Space Estimation
    Rajesh, M. V.
    Archana, R.
    Unnikrishnan, A.
    Gopikakaumari, R.
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 1477 - +
  • [48] Predictive Torque Control of Induction Machines Based on State-Space Models
    Miranda, Hernan
    Cortes, Patricio
    Yuz, Juan I.
    Rodriguez, Jose
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2009, 56 (06) : 1916 - 1924
  • [49] Computationally efficient predictive control based on ANN state-space models
    Hoekstra, Jan H.
    Cseppento, Bence
    Beintema, Gerben, I
    Schoukens, Maarten
    Kollar, Zsolt
    Toth, Roland
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 6336 - 6341
  • [50] Improved stability robustness bounds for digital control systems in state-space models
    Kolla, SR
    INTERNATIONAL JOURNAL OF CONTROL, 1996, 64 (05) : 991 - 994