High-fidelity DNA replication in Mycobacterium tuberculosis relies on a trinuclear zinc center

被引:20
作者
Banos-Mateos, Soledad [1 ]
van Roon, Anne-Marie M. [1 ]
Lang, Ulla F. [1 ]
Maslen, Sarah L. [1 ]
Skehel, J. Mark [1 ]
Lamers, Meindert H. [1 ]
机构
[1] MRC Lab Mol Biol, Francis Crick Ave,Cambridge Biomed Campus, Cambridge CB2 0QH, England
基金
英国医学研究理事会;
关键词
HISTIDINOL PHOSPHATE PHOSPHATASE; CRYSTAL-STRUCTURE; POLYMERASE-III; ENDONUCLEASE IV; IN-VIVO; REPAIR; EXONUCLEASE; EMERGENCE; REVEALS; BINDING;
D O I
10.1038/s41467-017-00886-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
High-fidelity DNA replication depends on a proofreading 3'-5' exonuclease that is associated with the replicative DNA polymerase. The replicative DNA polymerase DnaE1 from the major pathogen Mycobacterium tuberculosis (Mtb) uses its intrinsic PHP-exonuclease that is distinct from the canonical DEDD exonucleases found in the Escherichia coli and eukaryotic replisomes. The mechanism of the PHP-exonuclease is not known. Here, we present the crystal structure of the Mtb DnaE1 polymerase. The PHP-exonuclease has a trinuclear zinc center, coordinated by nine conserved residues. Cryo-EM analysis reveals the entry path of the primer strand in the PHP-exonuclease active site. Furthermore, the PHP-exonuclease shows a striking similarity to E. coli endonuclease IV, which provides clues regarding the mechanism of action. Altogether, this work provides important insights into the PHP-exonuclease and reveals unique properties that make it an attractive target for novel anti-mycobacterial drugs.
引用
收藏
页数:10
相关论文
共 58 条
[1]   PHENIX: a comprehensive Python']Python-based system for macromolecular structure solution [J].
Adams, Paul D. ;
Afonine, Pavel V. ;
Bunkoczi, Gabor ;
Chen, Vincent B. ;
Davis, Ian W. ;
Echols, Nathaniel ;
Headd, Jeffrey J. ;
Hung, Li-Wei ;
Kapral, Gary J. ;
Grosse-Kunstleve, Ralf W. ;
McCoy, Airlie J. ;
Moriarty, Nigel W. ;
Oeffner, Robert ;
Read, Randy J. ;
Richardson, David C. ;
Richardson, Jane S. ;
Terwilliger, Thomas C. ;
Zwart, Peter H. .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 :213-221
[2]   Phosphoesterase domains associated with DNA polymerases of diverse origins [J].
Aravind, L ;
Koonin, EV .
NUCLEIC ACIDS RESEARCH, 1998, 26 (16) :3746-3752
[3]   The structure of T-aquaticus DNA polymerase III is distinct from eukaryotic replicative DNA polymerases [J].
Bailey, Scott ;
Wing, Richard A. ;
Steitz, Thomas A. .
CELL, 2006, 126 (05) :893-904
[4]   Editing of misaligned 3′-termini by an intrinsic 3′-5′ exonuclease activity residing in the PHP domain of a family X DNA polymerase [J].
Banos, Benito ;
Lazaro, Jose M. ;
Villar, Laurentino ;
Salas, Margarita ;
de Vega, Miguel .
NUCLEIC ACIDS RESEARCH, 2008, 36 (18) :5736-5749
[5]   A structural role for the PHP domain in E. coli DNA polymerase III [J].
Barros, Tiago ;
Guenther, Joel ;
Kelch, Brian ;
Anaya, Jordan ;
Prabhakar, Arjun ;
O'Donnell, Mike ;
Kuriyan, John ;
Lamers, Meindert H. .
BMC STRUCTURAL BIOLOGY, 2013, 13
[6]   DnaE2 polymerase contributes to in vivo survival and the emergence of drug resistance in Mycobacterium tuberculosis [J].
Boshoff, HIM ;
Reed, MB ;
Barry, CE ;
Mizrahi, V .
CELL, 2003, 113 (02) :183-193
[7]   The role of mutators in the emergence of antibiotic-resistant bacteria [J].
Chopra, I ;
O'Neill, AJ ;
Miller, K .
DRUG RESISTANCE UPDATES, 2003, 6 (03) :137-145
[8]   Current status and prospects of HIV treatment [J].
Cihlar, Tomas ;
Fordyce, Marshall .
CURRENT OPINION IN VIROLOGY, 2016, 18 :50-56
[9]   Prospecting for Unannotated Enzymes: Discovery of a 3′,5′-Nucleotide Bisphosphate Phosphatase within the Amidohydrolase Superfamily [J].
Cummings, Jennifer A. ;
Vetting, Matthew ;
Ghodge, Swapnil V. ;
Xu, Chengfu ;
Hillerich, Brandan ;
Seidel, Ronald D. ;
Almo, Steven C. ;
Raushel, Frank M. .
BIOCHEMISTRY, 2014, 53 (03) :591-600
[10]   Features and development of Coot [J].
Emsley, P. ;
Lohkamp, B. ;
Scott, W. G. ;
Cowtan, K. .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 2010, 66 :486-501