Progress on developing wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice

被引:1
作者
Zam, Azhar [1 ]
Zhang, Pengfei [1 ]
Jian, Yifan [2 ]
Sarunic, Marinko V. [2 ]
Bonora, Stefano [3 ]
Pugh, Edward N., Jr. [1 ]
Zawadzki, Robert J. [1 ,4 ]
机构
[1] Univ Calif Davis, UC Davis Rise EyePod Imaging Fac, Dept Cell Biol & Human Anat, Davis, CA 95616 USA
[2] Simon Fraser Univ, Sch Engn Sci, Burnaby, BC V5A 1S6, Canada
[3] CNR, Inst Photon & Nanotechnol, I-35131 Padua, Italy
[4] Univ Calif Davis, Dept Ophthalmol & Visual Sci, Sacramento, CA 95817 USA
来源
OPTICAL COHERENCE TOMOGRAPHY AND COHERENCE DOMAIN OPTICAL METHODS IN BIOMEDICINE XIX | 2015年 / 9312卷
基金
美国国家科学基金会;
关键词
Optical coherence tomography; Adaptive optics; Imaging system; Medical optics instrumentation; Ophthalmology; Animal models; RESOLUTION; EYE;
D O I
10.1117/12.2077867
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We present a new design for a wavefront sensorless adaptive optics (WS-AO) Fourier domain optical coherence tomography (FD-OCT) system for small animal retinal imaging in vivo. Without the optical complications necessary for inclusion of a wavefront sensor in the optical system, this version of WS-AO FD-OCT system has a simplified optical design, including elimination of long focal length scanning optics and optical conjugation of vertical and horizontal scanners. This modification provides a modular large Field of View for retinal screening (25 degree visual angle), while also allowing a "zoom" capability for allocating all the scanning resources to a smaller region of interest, allowing high resolution aberration-corrected imaging. In the present system we used a 0 Dpt contact lens to stabilize the mouse eye position and to allow long duration imaging. Defocus (axial focus position) in our system is controlled by the collimation of the OCT sample arm entrance beam.
引用
收藏
页数:6
相关论文
共 6 条
[1]   Optimal pupil size in the human eye for axial resolution [J].
Donnelly, WJ ;
Roorda, A .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2003, 20 (11) :2010-2015
[2]   Adaptive optics retinal imaging in the living mouse eye [J].
Geng, Ying ;
Dubra, Alfredo ;
Yin, Lu ;
Merigan, William H. ;
Sharma, Robin ;
Libby, Richard T. ;
Williams, David R. .
BIOMEDICAL OPTICS EXPRESS, 2012, 3 (04) :715-734
[3]   Adaptive Optics Retinal Imaging: Emerging Clinical Applications [J].
Godara, Pooja ;
Dubis, Adam M. ;
Roorda, Austin ;
Duncan, Jacque L. ;
Carroll, Joseph .
OPTOMETRY AND VISION SCIENCE, 2010, 87 (12) :930-941
[4]   Adaptive-optics ultrahigh-resolution optical coherence tomography [J].
Hermann, B ;
Fernández, EJ ;
Unterhuber, A ;
Sattmann, H ;
Fercher, AF ;
Drexler, W ;
Prieto, PM ;
Artal, P .
OPTICS LETTERS, 2004, 29 (18) :2142-2144
[5]   Wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice [J].
Jian, Yifan ;
Xu, Jing ;
Gradowski, Martin A. ;
Bonora, Stefano ;
Zawadzki, Robert J. ;
Sarunic, Marinko V. .
BIOMEDICAL OPTICS EXPRESS, 2014, 5 (02) :547-559
[6]  
Kempf C. J., 2010, MOEMS MEMS