Gini characterization of extreme-value statistics

被引:21
作者
Eliazar, Iddo I. [1 ]
Sokolov, Igor M. [2 ]
机构
[1] Holon Inst Technol, Dept Technol Management, IL-58102 Holon, Israel
[2] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany
关键词
Gini's index; Extreme-value statistics; Gumbel law; Frechet law; Weibull law; Poisson processes; Poissonian populations; VITREOUS-SILICA;
D O I
10.1016/j.physa.2010.07.005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper presents a profound connection between Gini's index and extreme-value statistics. Gini's index is a quantitative gauge for the evenness of probability laws defined on the positive half-line, and is the common measure of societal egalitarianism applied in Economics and in the Social Sciences. Extreme-value statistics - namely, the Gumbel, Frechet and Weibull probability laws - are the only possible asymptotic statistics emerging from the extremes of large ensembles of independent and identically distributed random variables. Extreme-value statistics play a major role - all across Science and Engineering in the analysis of rare and extreme events. Introducing generalizations of Gini's index, and exploring an elemental Poissonian structure underlying the extreme-value statistics, we establish in this paper a Gini-based characterization of extreme-value statistics. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:4462 / 4472
页数:11
相关论文
共 24 条
[1]   A new approach to galaxy morphology. I. Analysis of the sloan digital sky survey early data release [J].
Abraham, RG ;
van den Bergh, S ;
Nair, P .
ASTROPHYSICAL JOURNAL, 2003, 588 (01) :218-229
[2]  
[Anonymous], 1987, ASYMPTOTIC THEORY EX
[3]  
[Anonymous], LETT ED ARTI
[4]   LOCALIZATION OF NORMAL MODES IN VITREOUS SILICA, GERMANIA AND BERYLLIUM FLUORIDE [J].
BELL, RJ ;
DEAN, P ;
HIBBINSB.DC .
JOURNAL OF PHYSICS PART C SOLID STATE PHYSICS, 1970, 3 (10) :2111-&
[5]   STRUCTURE OF VITREOUS-SILICA - VALIDITY OF RANDOM NETWORK THEORY [J].
BELL, RJ ;
DEAN, P .
PHILOSOPHICAL MAGAZINE, 1972, 25 (06) :1381-&
[6]   Fractal Poisson processes [J].
Eliazar, Iddo ;
Klafter, Joseph .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (21) :4985-4996
[7]   Lorenzian analysis of infinite Poissonian populations and the phenomena of Paretian ubiquity [J].
Eliazar, Iddo .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 386 (01) :318-334
[8]   Diversity of Poissonian populations [J].
Eliazar, Iddo I. ;
Sokolov, Igor M. .
PHYSICAL REVIEW E, 2010, 81 (01)
[9]   Measuring statistical heterogeneity: The Pietra index [J].
Eliazar, Iddo I. ;
Sokolov, Igor M. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2010, 389 (01) :117-125
[10]  
Embrechts P., 2008, Modelling Extremal Events