Finite Time Singularity of the Nematic Liquid Crystal Flow in Dimension Three

被引:42
作者
Huang, Tao
Lin, Fanghua
Liu, Chun
Wang, Changyou [1 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
GLOBAL SMALL SOLUTIONS; BLOW-UP; HEAT-FLOW; HARMONIC MAPS; PARTIAL REGULARITY; EXISTENCE; SYSTEM;
D O I
10.1007/s00205-016-0983-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the initial and boundary value problem of a simplified nematic liquid crystal flow in dimension three and construct two examples of finite time singularity. The first example is constructed within the class of axisymmetric solutions, while the second example is constructed for any generic initial data that has sufficiently small energy, and has a nontrivial topology.
引用
收藏
页码:1223 / 1254
页数:32
相关论文
共 47 条
[1]  
[Anonymous], 2002, CAMBRIDGE TRACTS MAT
[2]  
[Anonymous], 1966, GRUNDLEHREN MATH WIS
[3]  
[Anonymous], 1993, COMMUN ANAL GEOM
[4]  
Bird R. Byron, 1987, Kinetic theory, V2
[5]  
CHANG KC, 1989, ANN I H POINCARE-AN, V6, P363
[6]  
CHANG KC, 1992, J DIFFER GEOM, V36, P507
[7]  
CHANG KC, 1990, NEMATICS, P37
[8]   BLOW-UP AND GLOBAL EXISTENCE FOR HEAT FLOWS OF HARMONIC MAPS [J].
CHEN, Y ;
DING, WY .
INVENTIONES MATHEMATICAE, 1990, 99 (03) :567-578
[9]   EXISTENCE AND PARTIAL REGULARITY RESULTS FOR THE HEAT-FLOW FOR HARMONIC MAPS [J].
CHEN, YM ;
STRUWE, M .
MATHEMATISCHE ZEITSCHRIFT, 1989, 201 (01) :83-103
[10]  
CORON JM, 1989, CR ACAD SCI I-MATH, V308, P339