Using airborne HIAPER Pole-to-Pole Observations (HIPPO) to evaluate model and remote sensing estimates of atmospheric carbon dioxide

被引:19
作者
Frankenberg, Christian [1 ,2 ]
Kulawik, Susan S. [3 ]
Wofsy, Steven C. [4 ]
Chevallier, Frederic [5 ]
Daube, Bruce [4 ]
Kort, Eric A. [6 ]
O'Dell, Christopher [7 ]
Olsen, Edward T. [2 ]
Osterman, Gregory [2 ]
机构
[1] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA
[2] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA
[3] Bay Area Environm Res Inst, Sonoma, CA 95476 USA
[4] Harvard Univ, Cambridge, MA 02138 USA
[5] LSCE, Gif Sur Yvette, France
[6] Univ Michigan, Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA
[7] Colorado State Univ, Cooperat Inst Res Atmosphere, Ft Collins, CO 80523 USA
关键词
FOURIER-TRANSFORM SPECTROMETER; GASES OBSERVING SATELLITE; SEASONAL CYCLE; CO2; GOSAT; SENSITIVITY; ALGORITHM; TRANSPORT; NORTHERN; EXCHANGE;
D O I
10.5194/acp-16-7867-2016
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In recent years, space-borne observations of atmospheric carbon dioxide (CO2) have been increasingly used in global carbon-cycle studies. In order to obtain added value from space-borne measurements, they have to suffice stringent accuracy and precision requirements, with the latter being less crucial as it can be reduced by just enhanced sample size. Validation of CO2 column-averaged dry air mole fractions (XCO2) heavily relies on measurements of the Total Carbon Column Observing Network (TCCON). Owing to the sparseness of the network and the requirements imposed on space-based measurements, independent additional validation is highly valuable. Here, we use observations from the High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER) Pole-to-Pole Observations (HIPPO) flights from 01/2009 through 09/2011 to validate CO2 measurements from satellites (Greenhouse Gases Observing Satellite - GOSAT, Thermal Emission Sounder - TES, Atmospheric Infrared Sounder - AIRS) and atmospheric inversion models (CarbonTracker CT2013B, Monitoring Atmospheric Composition and Climate (MACC) v13r1). We find that the atmospheric models capture the XCO2 variability observed in HIPPO flights very well, with correlation coefficients (r(2)) of 0.93 and 0.95 for CT2013B and MACC, respectively. Some larger discrepancies can be observed in profile comparisons at higher latitudes, in particular at 300aEuro-hPa during the peaks of either carbon uptake or release. These deviations can be up to 4aEuro-ppm and hint at misrepresentation of vertical transport. Comparisons with the GOSAT satellite are of comparable quality, with an r(2) of 0.85, a mean bias mu of -0.06aEuro-ppm, and a standard deviation sigma of 0.45aEuro-ppm. TES exhibits an r(2) of 0.75, mu of 0.34aEuro-ppm, and sigma of 1.13aEuro-ppm. For AIRS, we find an r(2) of 0.37, mu of 1.11aEuro-ppm, and sigma of 1.46aEuro-ppm, with latitude-dependent biases. For these comparisons at least 6, 20, and 50 atmospheric soundings have been averaged for GOSAT, TES, and AIRS, respectively. Overall, we find that GOSAT soundings over the remote Pacific Ocean mostly meet the stringent accuracy requirements of about 0.5aEuro-ppm for space-based CO2 observations.
引用
收藏
页码:7867 / 7878
页数:12
相关论文
共 29 条
[1]   The seasonal variation of the CO2 flux over Tropical Asia estimated fromGOSAT, CONTRAIL, and IASI [J].
Basu, S. ;
Krol, M. ;
Butz, A. ;
Clerbaux, C. ;
Sawa, Y. ;
Machida, T. ;
Matsueda, H. ;
Frankenberg, C. ;
Hasekamp, O. P. ;
Aben, I. .
GEOPHYSICAL RESEARCH LETTERS, 2014, 41 (05) :1809-1815
[2]   Satellite chartography of atmospheric methane from SCIAMACHYon board ENVISAT:: 2.: Evaluation based on inverse model simulations [J].
Bergamaschi, P. ;
Frankenberg, C. ;
Meirink, J. F. ;
Krol, M. ;
Dentener, F. ;
Wagner, T. ;
Platt, U. ;
Kaplan, J. O. ;
Koerner, S. ;
Heimann, M. ;
Dlugokencky, E. J. ;
Goede, A. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2007, 112 (D2)
[3]   On the determination of atmospheric minor gases by the method of vanishing partial derivatives with application to CO2 -: art. no. L22803 [J].
Chahine, M ;
Barnet, C ;
Olsen, ET ;
Chen, L ;
Maddy, E .
GEOPHYSICAL RESEARCH LETTERS, 2005, 32 (22) :1-5
[4]   On the statistical optimality of CO2 atmospheric inversions assimilating CO2 column retrievals [J].
Chevallier, F. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2015, 15 (19) :11133-11145
[5]   Sensitivity analysis of the potential impact of discrepancies in stratosphere-troposphere exchange on inferred sources and sinks of CO2 [J].
Deng, F. ;
Jones, D. B. A. ;
Walker, T. W. ;
Keller, M. ;
Bowman, K. W. ;
Henze, D. K. ;
Nassar, R. ;
Kort, E. A. ;
Wofsy, S. C. ;
Walker, K. A. ;
Bourassa, A. E. ;
Degenstein, D. A. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2015, 15 (20) :11773-11788
[6]  
GHG-CCI, 2014, US REQ DOC GHG CCI P
[7]   Reduced carbon uptake during the 2010 Northern Hemisphere summer from GOSAT [J].
Guerlet, S. ;
Basu, S. ;
Butz, A. ;
Krol, M. ;
Hahne, P. ;
Houweling, S. ;
Hasekamp, O. P. ;
Aben, I. .
GEOPHYSICAL RESEARCH LETTERS, 2013, 40 (10) :2378-2383
[8]   Fourier transform spectrometer for Greenhouse gases Observing Satellite (GOSAT) [J].
Hamazaki, T ;
Kaneko, Y ;
Kuze, A ;
Kondo, K .
ENABLING SENSOR AND PLATFORM TECHNOLOGIES FOR SPACEBORNE REMOTE SENSING, 2005, 5659 :73-80
[9]  
Hourdin F, 1999, MON WEATHER REV, V127, P822, DOI 10.1175/1520-0493(1999)127<0822:TUOFVM>2.0.CO
[10]  
2