Baum-Connes morphism twisted by a non-unitary representation

被引:0
作者
Gomez-Aparicio, Maria Paula [1 ]
机构
[1] Inst Math Jussieu, Projet Algebres Operateurs & Representat, F-75013 Paris, France
关键词
Non-unitary representations; Banach algebras; KK-theory; Baum-Connes conjecture; K-THEORY; NOVIKOV-CONJECTURE; COCOMPACT LATTICES; PROPERTY RD; ALGEBRAS; PRODUCT;
D O I
10.1017/is009012003jkt078
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a locally compact group and rho a non-unitary finite dimensional representation of G. We consider tensor products of rho by some unitary representations of G in order to define two Banach algebras analogous to the group C(*)-algebras, C(*)(G) and C(r)*(G). We calculate the K-theory of such algebras for a large class of groups satisfying the Baum-Connes conjecture.
引用
收藏
页码:23 / 68
页数:46
相关论文
共 25 条
[1]  
BAUM P., 1993, CONT MATH, V167, P240
[2]   OKA PRINCIPLE, K-THEORY AND NONCOMMUTATIVE DYNAMIC-SYSTEMS [J].
BOST, JB .
INVENTIONES MATHEMATICAE, 1990, 101 (02) :261-333
[3]   Two remarks about the Baum-Connes map [J].
Chabert, J ;
Echterhoff, S ;
Meyer, R .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (07) :607-610
[4]   Property (RD) for cocompact lattices in a finite product of rank one Lie groups with some rank two Lie groups [J].
Chatterji, I .
GEOMETRIAE DEDICATA, 2003, 96 (01) :161-177
[5]  
Gomez-Aparicio MP, 2007, J LIE THEORY, V17, P505
[6]  
GOMEZAPARICIO MP, 2008, J NONCOMMUT IN PRESS
[7]  
GOMEZAPARICIO MP, 2007, THESIS U PARIS 7
[8]  
Higson N, 2004, LECT NOTES MATH, V1831, P137
[9]   Counterexamples to the Baum-Connes conjecture [J].
Higson, N ;
Lafforgue, V ;
Skandalis, G .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2002, 12 (02) :330-354
[10]   E-theory and KK-theory for groups which act properly and isometrically on Hilbert space [J].
Higson, N ;
Kasparov, G .
INVENTIONES MATHEMATICAE, 2001, 144 (01) :23-74