Cosmetic Electrochemistry II: Rapid and Facile Production of Metallic Electrocatalytic Ensembles

被引:6
作者
Choudhry, Nadeem A. [1 ]
Khairy, Mohamed [1 ]
Kadara, Rashid O. [1 ]
Jenkinson, Norman [1 ]
Banks, Craig E. [1 ]
机构
[1] Manchester Metropolitan Univ, Fac Sci & Engn, Sch Biol Chem & Hlth Sci, Div Chem & Mat, Manchester M1 5GD, Lancs, England
关键词
Electrocatalytic surfaces; Microdomains; Screen printed electrodes; Intelligent electroanalytical sensors; Cosmetic electrochemistry; GLASSY-CARBON ELECTRODES; BORON-DOPED DIAMOND; MICROELECTRODE ARRAYS; HYDRAZINE; OXIDATION;
D O I
10.1002/elan.201000180
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
We demonstrate a facile methodology for the production of metallic electrocatalytic microdomain ensembles for a range of analytical sensing challenges. A commercially available off-the-shelf cosmetic product can change the voltammetric characteristics of a metallic macro-electrode created electrolytically into that of a random ensemble of metallic microelectrode domains. Proof-of-concept is shown for three examples: a palladium ensemble for hydrazine sensing, a gold ensemble for arsenic(III) detection via anodic stripping voltammetry and platinum ensembles for the direct oxidation of arsenic(III). Last we demonstrate that the fabrication of metallic microdomains can be simplified by sputter coating screen printed electrochemical sensing platforms which are beneficially constructed using this cosmetic methodology. Given the facile fabrication and low cost of the underlying electrode substrate and the cosmetic modifier, the widespread implementation of this novel fabrication methodology is expected.
引用
收藏
页码:1831 / 1836
页数:6
相关论文
共 19 条
[1]   Electrocatalytic oxidation and determination of hydrazine on nickel hexacyanoferrate nanoparticles-modified carbon ceramic electrode [J].
Abbaspour, Abdolkarim ;
Khajehzadeh, Abdolreza ;
Ghaffarinejad, Ali .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2009, 631 (1-2) :52-57
[2]  
Adams R.N., 1969, ELECTROCHEMISTRY SOL
[3]   Arsenic poisoning in groundwater - Health risk and geochemical sources in Bangladesh [J].
Anawar, HM ;
Akai, J ;
Mostofa, KMG ;
Safiullah, S ;
Tareq, SM .
ENVIRONMENT INTERNATIONAL, 2002, 27 (07) :597-604
[4]   Electrochemical detection of arsenic on a gold nanoparticle array [J].
Baron, R. ;
Sljukic, B. ;
Salter, C. ;
Crossley, A. ;
Compton, R. G. .
RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A, 2007, 81 (09) :1443-1447
[5]   Sonochemically fabricated microelectrode arrays for biosensors offering widespread applicability: Part I [J].
Barton, AC ;
Collyer, SD ;
Davis, F ;
Gornall, DD ;
Law, KA ;
Lawrence, ECD ;
Mills, DW ;
Myler, S ;
Pritchard, JA ;
Thompson, M ;
Higson, SPJ .
BIOSENSORS & BIOELECTRONICS, 2004, 20 (02) :328-337
[6]   The electroanalytical detection of hydrazine: A comparison of the use of palladium nanoparticles supported on boron-doped diamond and palladium plated BDD microdisc array [J].
Batchelor-McAuley, C ;
Banks, CE ;
Simm, AO ;
Jones, TGJ ;
Compton, RG .
ANALYST, 2006, 131 (01) :106-110
[7]  
Choudhry NA, 2010, PHYS CHEM CHEM PHYS, V12, P2285, DOI 10.1039/b923246j
[8]  
Compton RG., 2018, UNDERSTANDING VOLTAM, DOI [DOI 10.1142/Q0155, DOI 10.1142/6430, 10.1142/q0155]
[9]   Detection of As(III) via oxidation to As(V) using platinum nanoparticle modified glassy carbon electrodes:: arsenic detection without interference from copper [J].
Dai, X ;
Compton, RG .
ANALYST, 2006, 131 (04) :516-521
[10]   Random assemblies of microelectrodes (RAM™ electrodes) for electrochemical studies [J].
Fletcher, S ;
Horne, MD .
ELECTROCHEMISTRY COMMUNICATIONS, 1999, 1 (10) :502-512