Manipulation of Autoresonant Intrinsic Localized Modes in MEMs Arrays

被引:2
作者
Sato, M. [1 ]
Fujita, N. [1 ]
Imai, S. [1 ]
Nishimura, S. [1 ]
Hori, Y. [1 ]
Sievers, A. J. [2 ]
机构
[1] Kanazawa Univ, Grad Sch Nat Sci & Technol, Kanazawa, Ishikawa 9201192, Japan
[2] Cornell Univ, Lab Atom & Solid State Phys, Ithaca, NY 14850 USA
来源
INTERNATIONAL CONFERENCE ON APPLICATIONS IN NONLINEAR DYNAMICS (ICAND 2010) | 2010年 / 1339卷
基金
美国国家科学基金会;
关键词
MEMs; EXCITATION; ENERGY;
D O I
10.1063/1.3574850
中图分类号
O59 [应用物理学];
学科分类号
摘要
The smallness of MEMS oscillators makes them an important platform for studying nonlinear phenomena. A unique feature, not shared by a harmonic system, is the dynamical steady state localization of some vibrations in driven nonlinear micromechanical lattices. Such an Intrinsic Localized Mode (ILM) is stable at any lattice site, and its position can be controlled by it interacting with an external field, a defect or another ILM. Both experiments and numerical simulations are used to explore the ILM-impurity attractive and repulsive interactions in micro-cantilever arrays in autoresonant states. The various findings reported here have a direct bearing on the application of nonlinear energy localization to implement smart functions in large-scale MEMS arrays.
引用
收藏
页码:118 / +
页数:2
相关论文
共 17 条
  • [1] Noise-enabled precision measurements of a duffing nanomechanical resonator
    Aldridge, JS
    Cleland, AN
    [J]. PHYSICAL REVIEW LETTERS, 2005, 94 (15) : 1 - 4
  • [2] Mass detection with a nonlinear nanomechanical resonator
    Buks, Eyal
    Yurke, Bernard
    [J]. PHYSICAL REVIEW E, 2006, 74 (04):
  • [3] Dynamical mechanism of intrinsic localized modes in microelectromechanical oscillator arrays
    Chen, Qingfei
    Huang, Liang
    Lai, Ying-Cheng
    Dietz, David
    [J]. CHAOS, 2009, 19 (01)
  • [4] Intrinsic localized modes in microresonator arrays and their relationship to nonlinear vibration modes
    Dick, A. J.
    Balachandran, B.
    Mote, C. D., Jr.
    [J]. NONLINEAR DYNAMICS, 2008, 54 (1-2) : 13 - 29
  • [5] SUPERNARROW SPECTRAL PEAKS AND HIGH-FREQUENCY STOCHASTIC RESONANCE IN SYSTEMS WITH COEXISTING PERIODIC ATTRACTORS
    DYKMAN, MI
    LUCHINSKY, DG
    MANNELLA, R
    MCCLINTOCK, PVE
    STEIN, ND
    STOCKS, NG
    [J]. PHYSICAL REVIEW E, 1994, 49 (02): : 1198 - 1215
  • [6] Autoresonant (nonstationary) excitation of pendulums, Plutinos, plasmas, and other nonlinear oscillators
    Fajans, J
    Frièdland, L
    [J]. AMERICAN JOURNAL OF PHYSICS, 2001, 69 (10) : 1096 - 1102
  • [7] Intrinsic localized modes in parametrically driven arrays of nonlinear resonators
    Kenig, Eyal
    Malomed, Boris A.
    Cross, M. C.
    Lifshitz, Ron
    [J]. PHYSICAL REVIEW E, 2009, 80 (04):
  • [8] Pattern selection in parametrically driven arrays of nonlinear resonators
    Kenig, Eyal
    Lifshitz, Ron
    Cross, M. C.
    [J]. PHYSICAL REVIEW E, 2009, 79 (02):
  • [9] Basins of attraction of a nonlinear nanomechanical resonator
    Kozinsky, I.
    Postma, H. W. Ch.
    Kogan, O.
    Husain, A.
    Roukes, M. L.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 99 (20)
  • [10] Mechanism of discrete breather excitation in driven micro-mechanical cantilever arrays
    Maniadis, P
    Flach, S
    [J]. EUROPHYSICS LETTERS, 2006, 74 (03): : 452 - 458