Iterated Integral Operators on the Cone of Monotone Functions

被引:3
作者
Stepanov, V. D. [1 ]
Shambilova, G. E. [2 ]
机构
[1] Russian Acad Sci, Steklov Math Inst, Moscow 119991, Russia
[2] RUDN Univ, Moscow 117198, Russia
基金
俄罗斯科学基金会;
关键词
Hardy-type inequality; weighted Lebesgue space; sublinear integral operator; WEIGHTED INEQUALITIES; BOUNDEDNESS;
D O I
10.1134/S0001434618090122
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Criteria for the boundedness of sublinear integral two-kernel operators of iterated type on cones of monotone functions in Lebesgue spaces on the real semiaxis are given.
引用
收藏
页码:443 / 453
页数:11
相关论文
共 10 条
  • [1] NECESSARY AND SUFFICIENT CONDITIONS FOR BOUNDEDNESS OF THE HARDY-TYPE OPERATOR FROM A WEIGHTED LEBESGUE SPACE TO A MORREY-TYPE SPACE
    Burenkov, V. I.
    Oinarov, R.
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2013, 16 (01): : 1 - 19
  • [2] Reduction theorems for weighted integral inequalities on the cone of monotone functions
    Gogatishvili, A.
    Stepanov, V. D.
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 2013, 68 (04) : 597 - 664
  • [3] Oinarov R., 1994, P STEKLOV I MATH+, V204, P205
  • [4] HARDY-TYPE INEQUALITIES ON THE WEIGHTED CONES OF QUASI-CONCAVE FUNCTIONS
    Persson, L. -E.
    Shambilova, G. E.
    Stepanov, V. D.
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2015, 9 (02): : 21 - 34
  • [5] Prokhorov DV, 2016, SB MATH+, V207, P1159, DOI [10.1070/SM8535, 10.4213/sm8535]
  • [6] On a class of weighted inequalities containing quasilinear operators
    Prokhorov, D. V.
    [J]. PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2016, 293 (01) : 272 - 287
  • [7] On weighted Hardy inequalities in mixed norms
    Prokhorov, D. V.
    Stepanov, V. D.
    [J]. PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2013, 283 (01) : 149 - 164
  • [8] Shambilova G. E., 2014, SIB MAT ZH, V55, P912
  • [9] Stepanov VD, 2017, EURASIAN MATH J, V8, P47
  • [10] Boundedness of quasilinear integral operators on the cone of monotone functions
    Stepanov, V. D.
    Shambilova, G. E.
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2016, 57 (05) : 884 - 904