Determination of trace perchlorate in water: a simplified method for the identification of potential interferences

被引:4
作者
Seiler, Maike A. [1 ,3 ]
Jensen, Detlef [2 ]
Neist, Udo [1 ]
Deister, Ursula K. [3 ]
Schmitz, Franz [1 ,4 ]
机构
[1] Hessian State Lab, Glarusstr 6, D-65185 Wiesbaden, Germany
[2] Thermo Fisher Sci, Steingrund 4-6, D-63303 Dreieich, Germany
[3] Hsch RheinMain, Bruckweg 26, D-65428 Russelsheim, Germany
[4] Hessian State Lab, Glarusstr 6, D-65203 Wiesbaden, Germany
来源
ENVIRONMENTAL SCIENCES EUROPE | 2017年 / 29卷
关键词
Chromatographic interferences; Disinfection byproducts; Ion chromatography; Method validation; Perchlorate;
D O I
10.1186/s12302-017-0128-7
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Background: Perchlorate contamination of water and food poses potential health risks to humans due to the possible interference of perchlorate with the iodide uptake into the thyroid gland. Perchlorate has been found in food and drinking, surface, or swimming pool waters in many countries, including the United States, Canada, France, Germany, and Switzerland, with ion chromatography (IC) being the preferred analytical method. The standardization of a robust ion chromatographic method is therefore of the high interest for public health and safety. This article summarizes the experiments and results obtained from analyzing untreated samples, considering the sample's electrical conductance as guidance for direct sample injection as described in EPA 314.0. Results: The suitability of ion chromatography with suppressed conductivity detection was tested for water samples in order to check the influence of matrix effects on the perchlorate signal of untreated samples. A sample injection volume of 750 mu L was applied to the selected 2 mm IC column. The IC determination of perchlorate at low mu g/L levels is challenged by the presence of high loads of matrix ions (e.g., chloride, nitrate, carbonate, and sulfate at 100 mg/L and above). Perchlorate recovery is impaired with the increasing matrix ion concentrations, and its chromatographic peak is asymmetric particularly at low perchlorate concentrations. The identification of the individual maximum concentration of interfering anions like chloride, nitrate, and sulfate that influence perchlorate recovery helps to reduce the number of sample preparation steps or an obligatory measurement of the electrical conductivity of the sample. Within the scope of this study, samples containing less than 125 mg/L of either anion did not need sample preparation. Conclusion: The identification of the maximum concentration of interfering anions like chloride, nitrate, and sulfate influencing perchlorate recovery provides a simplified alternative to the EPA 314.0 method. This approach reduces unnecessary sample preparation steps while allowing a reliable prognosis of possible interferences and maintaining result quality. This study was performed to support the development of a respective international standard, which is being established by the International Organization for Standardization (ISO). The results of the study are also intended to be used as guidance for interested laboratories to optimize the analytical workflow for trace perchlorate determination.
引用
收藏
页数:9
相关论文
共 11 条
  • [1] [Anonymous], 1990, 84661 ISO
  • [2] [Anonymous], 1987, 3696 ISO
  • [3] Bauer KH, 2016, LABOPLUS, VI, P6
  • [4] EPA, 1999, 3140 EPA NAT EXP RES
  • [5] ISO, 2011, 112062011 ISO, DOI [10.31030/1972886, DOI 10.31030/1972886]
  • [6] ISO, 2017, 19340 ISO
  • [7] ISO, 2009, 13530 ISOTS
  • [8] ISO 2012 International Organization for Standardization, WATER QUALITY
  • [9] Procedure for the quantification of rider peaks
    Jurt, S
    Schär, M
    Meyer, VR
    [J]. JOURNAL OF CHROMATOGRAPHY A, 2001, 929 (1-2) : 165 - 168
  • [10] LAWA, 2013, P 11 BEST GEL LON LO