Exponential spline method for approximation solution of Fredholm integro-differential equation

被引:20
作者
Jalilian, R. [1 ,2 ]
Tahernezhad, T. [1 ]
机构
[1] Razi Univ, Dept Math, Kermanshah, Iran
[2] Razi Univ, Dept Math,CONTACT,Jalilian,Tagh Bostan, PO Box 6714967346, Kermanshah, Iran
关键词
Parametric spline; Fredholm integro-differential equation; Convergence; BOUNDARY-VALUE-PROBLEMS; NONLINEAR FREDHOLM; NUMERICAL-SOLUTION; INTEGRAL-EQUATIONS; MATRIX-METHOD; MODEL;
D O I
10.1080/00207160.2019.1586891
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we approximate the solution of Fredholm integro-differential equations of the second kind by using exponential spline function. The proposed method reduces to the system of algebraic equations. The convergence analysis of the method has been discussed. The numerical examples are presented to illustrate the applications of the method and to compare the computed results with the method in Chen et al. [A multiscale Galerkin method for second-order boundary value problems of Fredholm integro-differential equation, J. Comput. Appl. Math. 290 (2015), pp. 633-640].
引用
收藏
页码:791 / 801
页数:11
相关论文
共 50 条
[41]   An Efficient Method for the Numerical Solution of a Class of Nonlinear Fractional Fredholm Integro-Differential Equations [J].
Heydari, M. H. ;
Dastjerdi, H. Laeli ;
Ahmadabadi, M. Nili .
INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2018, 19 (02) :165-173
[42]   Bell Polynomial Approach for the Solutions of Fredholm Integro-Differential Equations with Variable Coefficients [J].
Yildiz, Gokce ;
Tinaztepe, Gultekin ;
Sezer, Mehmet .
CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2020, 123 (03) :973-993
[43]   Projection methods for approximate solution of a class of nonlinear Fredholm integro-differential equations [J].
Mandal, Moumita ;
Kayal, Arnab ;
Nelakanti, Gnaneshwar .
APPLIED NUMERICAL MATHEMATICS, 2023, 184 :49-76
[44]   Comparison of Legendre polynomial approximation and variational iteration method for the solutions of general linear Fredholm integro-differential equations [J].
Bildik, Necdet ;
Konuralp, Ali ;
Yalcinbas, Salih .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (06) :1909-1917
[45]   A cubic Legendre spline collocation method to solve Volterra-Fredholm integro differential equation [J].
Pandya, B. M. ;
Joshi, D. C. .
2016 INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, AND OPTIMIZATION TECHNIQUES (ICEEOT), 2016, :2143-2146
[46]   UNIFORM CONVERGENCE RESULTS FOR SINGULARLY PERTURBED FREDHOLM INTEGRO-DIFFERENTIAL EQUATION [J].
Amiraliyev, Gabil M. ;
Durmaz, Muhammet Enes ;
Kudu, Mustafa .
JOURNAL OF MATHEMATICAL ANALYSIS, 2018, 9 (06) :55-64
[47]   A Solvability of a Problem for a Fredholm Integro-Differential Equation with Weakly Singular Kernel [J].
Assanova, A. T. ;
Nurmukanbet, S. N. .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (01) :182-191
[48]   A wavelet method for the Fredholm integro-differential equations with convolution kernel [J].
Jin, XQ ;
Sin, VK ;
Yuan, JY .
JOURNAL OF COMPUTATIONAL MATHEMATICS, 1999, 17 (04) :435-440
[49]   Error analysis and approximation of Jacobi pseudospectral method for the integer and fractional order integro-differential equation [J].
Mittal, Avinash Kumar .
APPLIED NUMERICAL MATHEMATICS, 2022, 171 :249-268
[50]   An efficient numerical method for a singularly perturbed Fredholm integro-differential equation with integral boundary condition [J].
Muhammet Enes Durmaz ;
Ilhame Amirali ;
Gabil M. Amiraliyev .
Journal of Applied Mathematics and Computing, 2023, 69 :505-528