Cross-Lingual Semantic Textual Similarity Modeling Using Neural Networks

被引:0
作者
Li, Xia [1 ,2 ]
Chen, Minping [2 ]
Zeng, Zihang [2 ]
机构
[1] Guangdong Univ Foreign Studies, Key Lab Language Engn & Comp, Guangzhou, Peoples R China
[2] Guangdong Univ Foreign Studies, Sch Informat Sci & Technol, Sch Cyber Secur, Guangzhou, Peoples R China
来源
MACHINE TRANSLATION, CWMT 2018 | 2019年 / 954卷
基金
美国国家科学基金会;
关键词
Cross-lingual semantic textual similarity; SemEval-2017; Neural networks;
D O I
10.1007/978-981-13-3083-4_5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cross-lingual semantic textual similarity is to measure the semantic similarity of sentences in different languages. Previous work pay more attention on leveraging traditional NLP features (e.g., alignment features, syntactic features) to evaluate the semantic similarity of sentences. In this paper, we only use word embedding as basic features without any handcrafted features and build a model which is able to capture local and global semantic information of the sentences to evaluate semantic textual similarity. We test our model on SemEval-2017 and STS benchmark datasets. Our experiments show that our model improves the performance of the semantic textual similarity and achieves the best results compared with the baseline neural-network based methods reported on the two datasets.
引用
收藏
页码:52 / 62
页数:11
相关论文
共 21 条
[1]  
Agirre E., 2016, P 10 SEMEVAL NAACL H, P497
[2]  
Agirre E., 2015, P 9 INT WORKSHOP SEM, P252
[3]  
Agirre Eneko., 2014, SEMEVAL COLING, P81, DOI 10.3115/v1/s14-2010
[4]  
Agirre Eneko., 2012, SEM 2012 1 JOINT C L, P385, DOI DOI 10.5555/2387636.2387697
[5]   A neural probabilistic language model [J].
Bengio, Y ;
Ducharme, R ;
Vincent, P ;
Jauvin, C .
JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 3 (06) :1137-1155
[6]  
Cer D., 2017, P 11 INT WORKSH SEM, P1, DOI DOI 10.18653/V1/S17-2001
[7]  
Cho KYHY, 2014, Arxiv, DOI arXiv:1409.1259
[8]  
Chung JY, 2014, Arxiv, DOI arXiv:1412.3555
[9]  
Graves A, 2012, STUD COMPUT INTELL, V385, P1, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
[10]  
Guo W., 2013, P 2 JOINT C LEX COMP, V1, P32