Connections between optimal stopping and singular stochastic control

被引:35
作者
Boetius, F [1 ]
Kohlmann, M [1 ]
机构
[1] Univ Konstanz, Fak Math & Informat, D-78434 Constance, Germany
关键词
singular control; optimal stopping; impulse control; local times; irreversible investment; options;
D O I
10.1016/S0304-4149(98)00049-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider an optimal control problem for an Ito diffusion and a related stopping problem. Their value functions satisfy (d/dx)V=u and an optimal control defines an optimal stopping time. Conversely, we construct an optimal control from optimal stopping times, and a representation of V as an integral of u and describe the optimal state as a reflected process. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:253 / 281
页数:29
相关论文
共 33 条
[1]  
Baldursson F. M., 1987, Stochastics, V21, P1, DOI 10.1080/17442508708833449
[2]  
BALDURSSON F. M., 1996, Finance Stoch., V1, P69
[3]   THE PARTIALLY OBSERVED STOCHASTIC MINIMUM PRINCIPLE [J].
BARAS, JS ;
ELLIOTT, RJ ;
KOHLMANN, M .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1989, 27 (06) :1279-1292
[4]  
Bather J., 1967, P 5 BERK S MATH STAT, VIII, P181
[5]  
Benes V. E., 1980, Stochastics, V4, P39, DOI 10.1080/17442508008833156
[6]  
Bensoussan A., 1984, IMPULSE CONTROL QUAS
[7]   ADDITIVE CONTROL OF STOCHASTIC LINEAR-SYSTEMS WITH FINITE-HORIZON [J].
CHOW, PL ;
MENALDI, JL ;
ROBIN, M .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1985, 23 (06) :858-899
[8]  
DARLING RWR, 1992, DIFFUSION PROCESSES, V2, P75
[9]   PORTFOLIO SELECTION WITH TRANSACTION COSTS [J].
DAVIS, MHA ;
NORMAN, AR .
MATHEMATICS OF OPERATIONS RESEARCH, 1990, 15 (04) :676-713
[10]  
Dixit K., 1994, INVESTMENT UNCERTAIN