Quasi-Newton methods in infinite-dimensional spaces and application to matrix equations

被引:5
作者
Benahmed, Boubakeur [1 ]
Mokhtar-Kharroubi, Hocine [2 ]
de Malafosse, Bruno [3 ]
Yassine, Adnan [3 ]
机构
[1] ENSET Oran, Dept Math & Informat, El Mnaouer, Algeria
[2] Univ Oran, Dept Math, Fac Sci, El Mnaouer, Algeria
[3] Univ Havre, Lab Math Appl Havre, F-76058 Le Havre, France
关键词
Nonlinear equations; Optimization problems; Quasi-Newton methods; Rate of convergence; Linear convergence; Superlinear convergence; Hilbert space; Matrix equations; Algebraic Riccati equation; SUPERLINEAR CONVERGENCE; RICCATI-EQUATIONS; DAVIDONS METHOD;
D O I
10.1007/s10898-010-9564-2
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In the first part of this paper, we give a survey on convergence rates analysis of quasi-Newton methods in infinite Hilbert spaces for nonlinear equations. Then, in the second part we apply quasi-Newton methods in their Hilbert formulation to solve matrix equations. So, we prove, under natural assumptions, that quasi-Newton methods converge locally and superlinearly; the global convergence is also studied. For numerical calculations, we propose new formulations of these methods based on the matrix representation of the dyadic operator and the vectorization of matrices. Finally, we apply our results to algebraic Riccati equations.
引用
收藏
页码:365 / 379
页数:15
相关论文
共 34 条
[1]  
Abou-Kandil Hisham, 2003, SYS CON FDN
[2]  
[Anonymous], 1986, NONLINEAR FUNCTION 1
[3]   ALGORITHM - SOLUTION OF MATRIX EQUATION AX+XB = C [J].
BARTELS, RH ;
STEWART, GW .
COMMUNICATIONS OF THE ACM, 1972, 15 (09) :820-&
[4]  
BENAHMED B, 2007, THESIS U ORAN ALGERI
[5]  
BENAHMED B, 2009, AFR DIASPORA J MATH, V8, P1
[6]  
BENAHMED B, 2007, IJMMS, P17, DOI DOI 10.1155/2007/25705
[7]   QUASI-NEWTON METHODS AND THEIR APPLICATION TO FUNCTION MINIMISATION [J].
BROYDEN, CG .
MATHEMATICS OF COMPUTATION, 1967, 21 (99) :368-&
[8]  
BROYDEN CG, 1965, MATH COMPUT, V19, P557
[9]  
BROYDEN CG, 1973, MATH COMPUT, V12, P223
[10]  
DENNIS JE, 1974, MATH COMPUT, V28, P549, DOI 10.1090/S0025-5718-1974-0343581-1