Engineering of Klebsiella oxytoca for production of 2,3-butanediol via simultaneous utilization of sugars from a Golenkinia sp hydrolysate

被引:14
作者
Park, Jong Hyun [1 ]
Choi, Min Ah [1 ]
Kim, Yong Jae [1 ]
Kim, Yeu-Chun [1 ]
Chang, Yong Keun [1 ,2 ]
Jeong, Ki Jun [1 ,2 ,3 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Chem & Biomol Engn, Plus Program BK21, 291 Daehak Ro, Daejeon 34141, South Korea
[2] Adv Biomass R&D Ctr ABC, 291 Daehak Ro, Daejeon 34141, South Korea
[3] Korea Adv Inst Sci & Technol, Inst BioCentury KIB, 291 Daehak Ro, Daejeon 34141, South Korea
关键词
Klebsiella oxytoca; Golenkinia sp; Galactose permease; Microalgae hydrolysate; 2,3-Butanediol; CARBON CATABOLITE REPRESSION; HIGH-LEVEL EXPRESSION; ESCHERICHIA-COLI; PROTEIN; GENE; METHYLGLYOXAL; PROMOTER; BACTERIA; ACID; MECHANISMS;
D O I
10.1016/j.biortech.2017.05.111
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
The Klebsiella oxytoca was engineered to produce 2,3-butanediol (2,3-BDO) simultaneously utilizing glucose and galactose obtained from a Golenkinia sp. hydrolysate. For efficient uptake of galactose at a high concentration of glucose, Escherichia coli galactose permease (GalP) was introduced, and the expression of galP under a weak-strength promoter resulted in simultaneous consumption of galactose and glucose. Next, to improve the sugar consumption, a gene encoding methylglyoxal synthase (MgsA) known as an inhibitor of multisugar metabolism was deleted, and the mgsA-null mutant showed much faster consumption of both sugars than the wild-type strain did. Finally, we demonstrated that the engineered K. oxytoca could utilize sugar extracts from a Golenkinia sp. hydrolysate and successfully produces 2,3-BDO. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1386 / 1392
页数:7
相关论文
共 42 条
  • [1] Tuning genetic control through promoter engineering
    Alper, H
    Fischer, C
    Nevoigt, E
    Stephanopoulos, G
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (36) : 12678 - 12683
  • [2] TIGHTLY REGULATED TAC PROMOTER VECTORS USEFUL FOR THE EXPRESSION OF UNFUSED AND FUSED PROTEINS IN ESCHERICHIA-COLI
    AMANN, E
    OCHS, B
    ABEL, KJ
    [J]. GENE, 1988, 69 (02) : 301 - 315
  • [3] Andersen JB, 1998, APPL ENVIRON MICROB, V64, P2240
  • [4] Biotechnological production of 2,3-butanediol-Current state and prospects
    Celinska, E.
    Grajek, W.
    [J]. BIOTECHNOLOGY ADVANCES, 2009, 27 (06) : 715 - 725
  • [5] Improved 2,3-butanediol production from corncob acid hydrolysate by fed-batch fermentation using Klebsiella oxytoca
    Cheng, Ke-Ke
    Liu, Qing
    Zhang, Jian-An
    Li, Jin-Ping
    Xu, Jing-Ming
    Wang, Ge-Hua
    [J]. PROCESS BIOCHEMISTRY, 2010, 45 (04) : 613 - 616
  • [6] Fermentation and evaluation of Klebsiella pneumoniae and K. oxytoca on the production of 2,3-butanediol
    Cho, Jung-Hee
    Rathnasingh, Chelladurai
    Song, Hyohak
    Chung, Bong-Woo
    Lee, Hee Jong
    Seung, Doyoung
    [J]. BIOPROCESS AND BIOSYSTEMS ENGINEERING, 2012, 35 (07) : 1081 - 1088
  • [7] Hydrothermal acid treatment for sugar extraction from Golenkinia sp.
    Choi, Sun-A
    Choi, Won-Il
    Lee, Jin-Suk
    Kim, Seung Wook
    Lee, Gye-An
    Yun, Jihyun
    Park, Ji-Yeon
    [J]. BIORESOURCE TECHNOLOGY, 2015, 190 : 408 - 411
  • [8] The mechanisms of carbon catabolite repression in bacteria
    Deutscher, Josef
    [J]. CURRENT OPINION IN MICROBIOLOGY, 2008, 11 (02) : 87 - 93
  • [9] Hydrolysis of microalgae cell walls for production of reducing sugar and lipid extraction
    Fu, Chun-Chong
    Hung, Tien-Chieh
    Chen, Jing-Yi
    Su, Chia-Hung
    Wu, Wen-Teng
    [J]. BIORESOURCE TECHNOLOGY, 2010, 101 (22) : 8750 - 8754
  • [10] FERMENTATIVE PRODUCTION OF 2,3-BUTANEDIOL - A REVIEW
    GARG, SK
    JAIN, A
    [J]. BIORESOURCE TECHNOLOGY, 1995, 51 (2-3) : 103 - 109