Additive Fast Fourier Transforms Over Finite Fields

被引:48
作者
Gao, Shuhong [1 ]
Mateer, Todd [2 ]
机构
[1] Clemson Univ, Dept Math Sci, Clemson, SC 29634 USA
[2] Howard Community Coll, Div Math, Columbia, MD 21044 USA
基金
美国国家科学基金会;
关键词
Fast Fourier transform (FFT); Taylor expansion; multiplication; convolution; Reed-Solomon codes; POLYNOMIAL CODES; COMPUTATION;
D O I
10.1109/TIT.2010.2079016
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present new additive Fast Fourier Transform (FFT) algorithms based on Taylor expansions over finite fields of characteristic two. The new algorithms improve previous approaches by Wang and Zhu (1988), Cantor (1989), and von zur Gathen and Gerhard (1996).
引用
收藏
页码:6265 / 6272
页数:8
相关论文
共 19 条
[1]  
[Anonymous], 2003, Modern Computer Algebra
[2]  
BLAKE IF, 1993, APPL FINITE FIELDS
[3]   ON ARITHMETICAL ALGORITHMS OVER FINITE-FIELDS [J].
CANTOR, DG .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1989, 50 (02) :285-300
[4]   Reduced-Complexity Reed-Solomon Decoders Based on Cyclotomic FFTs [J].
Chen, Ning ;
Yan, Zhiyuan .
IEEE SIGNAL PROCESSING LETTERS, 2009, 16 (04) :279-282
[5]   Cyclotomic FFTs With Reduced Additive Complexities Based on a Novel Common Subexpression Elimination Algorithm [J].
Chen, Ning ;
Yan, Zhiyuan .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (03) :1010-1020
[6]   AN ALGORITHM FOR MACHINE CALCULATION OF COMPLEX FOURIER SERIES [J].
COOLEY, JW ;
TUKEY, JW .
MATHEMATICS OF COMPUTATION, 1965, 19 (90) :297-&
[7]   On computing the syndrome polynomial in Reed-Solomon decoder [J].
Costa, E ;
Fedorenko, SV ;
Trifonov, PV .
EUROPEAN TRANSACTIONS ON TELECOMMUNICATIONS, 2004, 15 (04) :337-342
[8]   A Method for Computation of the Discrete Fourier Transform over a Finite Field [J].
Fedorenko, S. .
PROBLEMS OF INFORMATION TRANSMISSION, 2006, 42 (02) :139-151
[9]  
Fedorenko S. V., 2009, P 12 INT S PROBL RED, P65
[10]  
Gao SH, 2003, SPRINGER INT SER ENG, V712, P55