An upper bound for ∥ A-1 ∥∞ of strictly diagonally dominant M-matrices

被引:12
作者
Cheng, Guang-Hui [1 ]
Huang, Ting-Hu [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Appl Math, Chengdu 610054, Sichuan, Peoples R China
关键词
diagonal dominance; M-matrix; inverse M-matrix;
D O I
10.1016/j.laa.2007.06.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be a real strictly diagonally dominant M-matrix. We give a sharp upper bound for parallel to A(-1)parallel to(infinity). Furthermore, the lower bound of the smallest eigenvalue q(A) is established. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:667 / 673
页数:7
相关论文
共 8 条
[1]  
Berman A., 1994, CLASSICS APPL MATH, DOI [10.1016/C2013-0-10361-3, 10.1137/1.9781611971262, DOI 10.1137/1.9781611971262]
[2]  
FIEDLER M, 1988, LINEAR ALGEBRA APPL, V101, P1
[3]  
Horn C. R., 1991, TOPICS MATRIX ANAL
[4]  
Johnson CR., 1977, LINEAR MULTILINEAR A, V4, P261, DOI [10.1080/03081087708817160, DOI 10.1080/03081087708817160]
[5]   Lower bounds for the minimum eigenvalue of Hadamard product of an M-matrix and its inverse [J].
Li, Hou-Biao ;
Huang, Ting-Zhu ;
Shen, Shu-Qian ;
Li, Hong .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 420 (01) :235-247
[6]   SUFFICIENT CONDITION FOR NONVANISHING OF DETERMINANTS [J].
SHIVAKUMAR, PN ;
CHEW, KH .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 43 (01) :63-66
[7]   On two-sided bounds related to weakly diagonally dominant M-matrices with application to digital circuit dynamics [J].
Shivakumar, PN ;
Williams, JJ ;
Ye, Q ;
Marinov, CA .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1996, 17 (02) :298-312
[8]   LOWER BOUND FOR SMALLEST SINGULAR VALUE OF A MATRIX [J].
VARAH, JM .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1975, 11 (01) :3-5