Prediction of Off-Target Effects in CRISPR/Cas9 System by Ensemble Learning

被引:4
作者
Fan, Yongxian [1 ]
Xu, Haibo [1 ]
机构
[1] Guilin Univ Elect Technol, Sch Comp Sci & Informat Secur, Guilin, Guangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
CRISPR/Cas9; off-target effects; machine learning; ensemblelearning; XGBoost; XGBCRISPR; CRISPR-CAS9; NUCLEASES; RNA; DNA; SPECIFICITY; CLEAVAGE; DESIGN; MODEL; SEQ; SINGLE; SITES;
D O I
10.2174/1574893616666210811100938
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: CRISPR/Cas9, a new generation of targeted gene editing technology with low cost and simple operation has been widely employed in the field of gene editing. The erroneous cutting of off-target sites in CRISPR/Cas9 is called off-target effect, which is also the biggest complication that CRISPR/Cas9 confronts in practical application. To be specific, the off-target effects could lead to unexpected gene editing results. Therefore, accurately predicting CRISPR/Cas9 off-target effect is a very important task. Predicting off-target effects of CRISPR/Cas9 by machine learning method is feasible, but most existing off-target tools did not pay close attention to the effects of gene encoding on prediction. Methods: We compared three encoding methods based on One-Hot and combined the gene sequence with four CRISPR/Cas9 off-target prediction tools to build an ensemble model with XGBoost, designated as XGBCRISPR. The grid search is employed to find the optimal parameters to achieve the best performance. Results: The performance is compared with existing tools based on the ROC value and PRC value. The experimental results show that the XGBCRISPR model is superior to the existing tools. Conclusion: The new model could achieve better prediction result than existing tools, but the accuracy of model can be improved further as many off-target scores appear.
引用
收藏
页码:1169 / 1178
页数:10
相关论文
共 54 条
[41]   In vivo genome editing using Staphylococcus aureus Cas9 [J].
Ran, F. Ann ;
Cong, Le ;
Yan, Winston X. ;
Scott, David A. ;
Gootenberg, Jonathan S. ;
Kriz, Andrea J. ;
Zetsche, Bernd ;
Shalem, Ophir ;
Wu, Xuebing ;
Makarova, Kira S. ;
Koonin, Eugene V. ;
Sharp, Phillip A. ;
Zhang, Feng .
NATURE, 2015, 520 (7546) :186-U98
[42]   Genome engineering using the CRISPR-Cas9 system [J].
Ran, F. Ann ;
Hsu, Patrick D. ;
Wright, Jason ;
Agarwala, Vineeta ;
Scott, David A. ;
Zhang, Feng .
NATURE PROTOCOLS, 2013, 8 (11) :2281-2308
[43]   The UCSC Genome Browser database: 2015 update [J].
Rosenbloom, Kate R. ;
Armstrong, Joel ;
Barber, Galt P. ;
Casper, Jonathan ;
Clawson, Hiram ;
Diekhans, Mark ;
Dreszer, Timothy R. ;
Fujita, Pauline A. ;
Guruvadoo, Luvina ;
Haeussler, Maximilian ;
Harte, Rachel A. ;
Heitner, Steve ;
Hickey, Glenn ;
Hinrichs, Angie S. ;
Hubley, Robert ;
Karolchik, Donna ;
Learned, Katrina ;
Lee, Brian T. ;
Li, Chin H. ;
Miga, Karen H. ;
Nguyen, Ngan ;
Paten, Benedict ;
Raney, Brian J. ;
Smit, Arian F. A. ;
Speir, Matthew L. ;
Zweig, Ann S. ;
Haussler, David ;
Kuhn, Robert M. ;
Kent, W. James .
NUCLEIC ACIDS RESEARCH, 2015, 43 (D1) :D670-D681
[44]   Convolution neural network model for predicting single guide RNA efficiency in CRISPR/Cas9 system [J].
Shrawgi, Hari ;
Sisodia, Dilip Singh .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2019, 189 :149-154
[45]   Cas9-chromatin binding information enables more accurate CRISPR off-target prediction [J].
Singh, Ritambhara ;
Kuscu, Cem ;
Quinlan, Aaron ;
Qi, Yanjun ;
Adli, Mazhar .
NUCLEIC ACIDS RESEARCH, 2015, 43 (18)
[46]   Rationally engineered Cas9 nucleases with improved specificity [J].
Slaymaker, Ian M. ;
Gao, Linyi ;
Zetsche, Bernd ;
Scott, David A. ;
Yan, Winston X. ;
Zhang, Feng .
SCIENCE, 2016, 351 (6268) :84-88
[47]   CCTop: An Intuitive, Flexible and Reliable CRISPR/Cas9 Target Prediction Tool [J].
Stemmer, Manuel ;
Thumberger, Thomas ;
Keyer, Maria del Sol ;
Wittbrodt, Joachim ;
Mateo, Juan L. .
PLOS ONE, 2015, 10 (04)
[48]  
Tsai SQ, 2017, NAT METHODS, V14, P607, DOI [10.1038/NMETH.4278, 10.1038/nmeth.4278]
[49]   GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases [J].
Tsai, Shengdar Q. ;
Zheng, Zongli ;
Nguyen, Nhu T. ;
Liebers, Matthew ;
Topkar, Ved V. ;
Thapar, Vishal ;
Wyvekens, Nicolas ;
Khayter, Cyd ;
Iafrate, A. John ;
Le, Long P. ;
Aryee, Martin J. ;
Joung, J. Keith .
NATURE BIOTECHNOLOGY, 2015, 33 (02) :187-197
[50]   Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors [J].
Wang, Xiaoling ;
Wang, Yebo ;
Wu, Xiwei ;
Wang, Jinhui ;
Wang, Yingjia ;
Qiu, Zhaojun ;
Chang, Tammy ;
Huang, He ;
Lin, Ren-Jang ;
Yee, Jiing-Kuan .
NATURE BIOTECHNOLOGY, 2015, 33 (02) :175-178