Jordan chains of elliptic partial differential operators and Dirichlet-to-Neumann maps

被引:3
作者
Behrndt, Jussi [1 ]
ter Elst, A. F. M. [2 ]
机构
[1] Graz Univ Technol, Inst Angew Math, Steyrergasse 30, A-8010 Graz, Austria
[2] Univ Auckland, Dept Math, Private Bag 92019, Auckland 1142, New Zealand
基金
奥地利科学基金会;
关键词
Jordan chain; eigenvector; generalized eigenvector; Robin boundary condition; Dirichlet-to-Neumann operator; SELF-ADJOINT EXTENSIONS; GENERALIZED RESOLVENTS; INVERSE PROBLEM; SCATTERING; PAIRS;
D O I
10.4171/JST/366
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega subset of R-d be a bounded open set with Lipschitz boundary Gamma. It will be shown that the Jordan chains of m-sectorial second-order elliptic partial differential operators with measurable coefficients and (local or non-local) Robin boundary conditions in L-2(Omega) can be characterized with the help of Jordan chains of the Dirichlet-to-Neumann map and the boundary operator from H-1/2(Gamma) into H-1/2(Gamma). This result extends the Birman-Schwinger principle in the framework of elliptic operators for the characterization of eigenvalues, eigenfunctions and geometric eigenspaces to the complete set of all generalized eigenfunctions and algebraic eigenspaces.
引用
收藏
页码:1081 / 1105
页数:25
相关论文
共 53 条
  • [1] [Anonymous], 1983, METHODS THEORY UNBOU
  • [2] [Anonymous], 1988, TRANSLATIONS MATH MO
  • [3] [Anonymous], 2002, Methods Funct. Anal. Topology
  • [4] [Anonymous], 1968, Ann. Sc. Norm. Sup. Pisa
  • [5] Fractional powers of sectorial operators via the Dirichlet-to-Neumann operator
    Arendt, W.
    ter Elst, A. F. M.
    Warma, M.
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2018, 43 (01) : 1 - 24
  • [6] Ultracontractivity and Eigenvalues: Weyl's Law for the Dirichlet-to-Neumann Operator
    Arendt, W.
    ter Elst, A. F. M.
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2017, 88 (01) : 65 - 89
  • [7] The Dirichlet-to-Neumann Operator on Exterior Domains
    Arendt, W.
    ter Elst, A. F. M.
    [J]. POTENTIAL ANALYSIS, 2015, 43 (02) : 313 - 340
  • [8] The Dirichlet-to-Neumann operator via hidden compactness
    Arendt, W.
    ter Elst, A. F. M.
    Kennedy, J. B.
    Sauter, M.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (03) : 1757 - 1786
  • [9] Arendt W, 2012, J OPERAT THEOR, V67, P33
  • [10] The Dirichlet-to-Neumann operator on rough domains
    Arendt, W.
    ter Elst, A. F. M.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (08) : 2100 - 2124