High efficiency GaN HEMT class-F synchronous rectifier for wireless applications

被引:13
作者
Abbasian, Sadegh [1 ]
Johnson, Thomas [1 ]
机构
[1] Univ British Columbia, Sch Engn, Kelowna, BC, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
class-F amplifier; RF synchronous rectifier; GaN;
D O I
10.1587/elex.11.20140952
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, experimental results are shown for a synchronous class-F RF to DC rectifier. The rectifier design is obtained by transforming a class-F amplifier into a rectifier using the theory of time reversal duality. The amplifier and rectifier are tested under identical source power conditions to demonstrate the duality between the circuits. A 10W Cree HEMT device is used in the designs at a frequency of 985 MHz. The class-F amplifier delivers 8.3W with an efficiency of 77.5% for a DC source power of 10.7W. The time reversed dual, a class-F rectifier, delivers 8.7W of DC load power for a RF input source power of 10.7W with an efficiency of 81.3%. The rectifier circuit has slightly higher efficiency than the amplifier and lower losses in the rectifier are attributed to device operation in both quadrants I and III compared to an amplifier which operates exclusively in quadrant I. The rectifier has a peak output power of 11.3W with an efficiency of 78% and this is the highest reported power for a synchronous RF class-F amplifier.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 15 条
[1]   A new nonlinear HEMT model for AlGaN/GaN switch applications [J].
Callet, Guillaume ;
Faraj, Jad ;
Jardel, Olivier ;
Charbonniaud, Christophe ;
Jacquet, Jean-Claude ;
Reveyrand, Tibault ;
Morvan, Erwan ;
Piotrowicz, Stephane ;
Teyssier, Jean-Pierre ;
Quere, R. .
INTERNATIONAL JOURNAL OF MICROWAVE AND WIRELESS TECHNOLOGIES, 2010, 2 (3-4) :283-291
[2]   Low-Power Wireless Power Delivery [J].
Falkenstein, Erez ;
Roberg, Michael ;
Popovic, Zoya .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2012, 60 (07) :2277-2286
[3]  
Gomez C., 2004, PROC 12 GAAS S, P315
[4]  
Guo J., 2013, P IMS2013, DOI [10.1109/MWSYM.2013.6697776, DOI 10.1109/MWSYM.2013.6697776]
[5]  
HAMILL DC, 1990, IEEE POWER ELECTRON, P512, DOI 10.1109/PESC.1990.131231
[6]  
Hamill DC, 1997, IEEE POWER ELECTRON, P789, DOI 10.1109/PESC.1997.616809
[7]  
ISHIKAWA R, 2013, P 43 EUR MICR C, P916
[8]  
Ishikawa R., 2013, P APMC2013, DOI [10.1109/APMC.2013.6695195, DOI 10.1109/APMC.2013.6695195]
[9]  
Litchfield M., 2014, P IMS2014, DOI [10.1109/MWSYM.2014.6848394, DOI 10.1109/MWSYM.2014.6848394]
[10]  
Noda A., 2012, P IMS2012