EfeUOB (YcdNOB) is a tripartite, acid-induced and CpxAR-regulated, low-pH Fe2+ transporter that is cryptic in Escherichia coli K-12 but functional in E-coli O157:H7

被引:135
作者
Cao, Jieni [1 ]
Woodhall, Mark R. [1 ]
Alvarez, Javier [1 ]
Cartron, Michael L. [1 ]
Andrews, Simon C. [1 ]
机构
[1] Univ Reading, Sch Biol Sci, Reading RG6 6AJ, Berks, England
关键词
D O I
10.1111/j.1365-2958.2007.05802.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Escherichia coli possesses iron transporters specific for either Fe2+ or Fe3+. Although Fe2+ is far more soluble than Fe3+, it rapidly oxidizes aerobically at pH >= 7. Thus, FeoAB, the major Fe2+ transporter of E. coli, operates anaerobically. However, Fe2+ remains stable aerobically under acidic conditions, although a low-pH Fe2+ importer has not been previously identified. Here we show that ycdNOB (efeUOB) specifies the first such transporter. efeUOB is repressed at high pH by CpxAR, and is Fe2+-Fur repressed. EfeU is homologous to the high-affinity iron permease, Ftr1p, of Saccharomyces cerevisiae and other fungi. EfeO is periplasmic with a cupredoxin N-terminal domain; EfeB is also periplasmic and is haem peroxidase-like. All three Efe proteins are required for Efe function. The efeU gene of E. coli K-12 is cryptic due to a frameshift mutation - repair of the single-base-pair deletion generates a functional EfeUOB system. In contrast, the efeUOB operon of the enterohaemorrhagic strain, O157:1147, lacks any frameshift and is functional. A 'wild-type' K-12 strain bearing a functional EfeUOB displays a major growth advantage under aerobic, low-pH, low-iron conditions when a competing metal is provided. Fe-55 transport assays confirm the ferrous iron specificity of EfeUOB.
引用
收藏
页码:857 / 875
页数:19
相关论文
共 60 条
[1]   Bacterial iron homeostasis [J].
Andrews, SC ;
Robinson, AK ;
Rodríguez-Quiñones, F .
FEMS MICROBIOLOGY REVIEWS, 2003, 27 (2-3) :215-237
[2]  
[Anonymous], 2001, Anal Biochem
[3]  
Askwith C, 1997, J BIOL CHEM, V272, P401
[4]   Global analysis of the Bacillus subtilis Fur regulon and the iron starvation stimulon [J].
Baichoo, N ;
Wang, T ;
Ye, R ;
Helmann, JD .
MOLECULAR MICROBIOLOGY, 2002, 45 (06) :1613-1629
[5]   Cloning and functional analysis of the pbr lead resistance determinant of Ralstonia metallidurans CH34 [J].
Borremans, B ;
Hobman, JL ;
Provoost, A ;
Brown, NL ;
Van der Lelie, D .
JOURNAL OF BACTERIOLOGY, 2001, 183 (19) :5651-5658
[6]   A tyrosine-phosphorylated 12-amino-acid sequence of enteropathogenic Escherichia coli Tir binds the host adaptor protein Nck and is required for Nck localization to actin pedestals [J].
Campellone, KG ;
Giese, A ;
Tipper, DJ ;
Leong, JM .
MOLECULAR MICROBIOLOGY, 2002, 43 (05) :1227-1241
[7]   Feo - Transport of ferrous iron into bacteria [J].
Cartron, Michael L. ;
Maddocks, Sarah ;
Gillingham, Paul ;
Craven, C. Jeremy ;
Andrews, Simon C. .
BIOMETALS, 2006, 19 (02) :143-157
[8]   GENE DISRUPTION IN ESCHERICHIA-COLI - TCR AND KM(R) CASSETTES WITH THE OPTION OF FLP-CATALYZED EXCISION OF THE ANTIBIOTIC-RESISTANCE DETERMINANT [J].
CHEREPANOV, PP ;
WACKERNAGEL, W .
GENE, 1995, 158 (01) :9-14
[9]   A reassessment of the FNR regulon and transcriptomic analysis of the effects of nitrate, nitrite, NarXL, and NarQP as Escherichia coli K12 adapts from aerobic to anaerobic growth [J].
Constantinidou, C ;
Hobman, JL ;
Griffiths, L ;
Patel, MD ;
Penn, CW ;
Cole, JA ;
Overton, TW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (08) :4802-4815
[10]   Reduction of iron by extracellular iron reductases: implications for microbial iron acquisition [J].
Cowart, RE .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2002, 400 (02) :273-281