Exact Real Trinomial Solutions to the Inner and Outer Hele-Shaw Problems

被引:2
作者
Runge, Vincent [1 ]
机构
[1] Ecole Cent Lyon, Inst Camille Jordan, CNRS, UMR 5208, F-69130 Ecully, France
关键词
Hele-Shaw cell; exact real trinomial solution; domain of univalence; UNIVALENT POLYNOMIALS; SURFACE; FLOW;
D O I
10.1007/s00021-014-0194-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We find an explicit representation of the evolution of t bar right arrow gamma(t) = {z(zeta,t), zeta is an element of C, vertical bar zeta vertical bar = 1} of the contour gamma(t) = partial derivative w(t) of fluid spots w(t) = {z(zeta,t), vertical bar zeta vertical bar < 1} for t > 0 or t < 0 in the Hele-Shaw problem with a sink (t > 0) or a source (t < 0) localized at point z(0,t) described by trinomials z(zeta,t) = a(1)(t)zeta + a(N()t)zeta(N) + a(M)(t)zeta(M) , where M = 2N - 1, and integer N >= 2, for the classical formulation of the problem when w(t) is within gamma(t) (inner Hele-Shaw problem), or by z(zeta,t) = a(-1)(t)zeta(-1) + a(N()t)zeta(N) + a(M)(t)zeta(M) , where M = 2N + 1, and integer N >= 1, for the outer Hele-Shaw problem when w(t) is outside of gamma(t) . We obtained a sufficient condition for univalence of real trinomials, improving a result found by Ruscheweyh and Wirths (Ann Pol Math. 28:341-355, 1973). A sufficient condition is also found for functions used in the outer problem.
引用
收藏
页码:9 / 22
页数:14
相关论文
共 22 条
[1]  
[Anonymous], 1973, ANN POL MATH, V28, P341
[2]  
[Anonymous], 1958, P ROY SOC LOND A MAT, V245 281, P312
[3]   EXACT SELF-SIMILAR SHAPES IN VISCOUS FINGERING [J].
BENAMAR, M .
PHYSICAL REVIEW A, 1991, 43 (10) :5724-5727
[4]   COEFFICIENT REGIONS FOR UNIVALENT POLYNOMIALS OF SMALL DEGREE [J].
BRANNAN, DA .
MATHEMATIKA, 1967, 14 (28P2) :165-&
[5]   On the number of roots in an algebraic equation for a circle. [J].
Cohn, A .
MATHEMATISCHE ZEITSCHRIFT, 1922, 14 :110-148
[6]   DOMAINS OF VARIABILITY FOR UNIVALENT POLYNOMIALS [J].
COWLING, VF ;
ROYSTER, WC .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1968, 19 (04) :767-&
[7]  
Dieudonne JA., 1931, Ann. Sci. Ecole Norm. Sup., V48, P247, DOI 10.24033/asens.812
[8]  
Galin L. A., 1945, DOKL AKAD NAUK SSSR, V47, P246
[9]  
Gustafsson B, 1984, ARK MAT, V22, P251
[10]  
HELE-SHAW H., 1898, Nature, V58, P34, DOI [10.1038/058034a0, DOI 10.1038/058034A0]