High power photonic crystal distributed feedback quantum cascade lasers emitting at 4.5 μm

被引:0
作者
Goekden, Burc [1 ]
Slivken, Steven B. [1 ]
Razeghi, Manijeh [1 ]
机构
[1] Northwestern Univ, Ctr Quantum Devices, Dept Elect Engn & Comp Sci, Evanston, IL 60208 USA
来源
QUANTUM SENSING AND NANOPHOTONIC DEVICES VII | 2010年 / 7608卷
关键词
Photonic Crystal Distributed Feedback Laser; Quantum Cascade Laser; Broad Area Laser; OPERATION;
D O I
10.1117/12.855649
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Quantum cascade lasers possess very small linewidth enhancement factor, which makes them very prominent candidates for realization of high power, nearly diffraction limited and single mode photonic crystal distributed feedback broad area lasers in the mid-infrared frequencies. In this paper, we present room temperature operation of a two dimensional photonic crystal distributed feedback quantum cascade laser emitting at 4.5 mu m. peak power up to similar to 0.9 W per facet is obtained from a 2 mm long laser with 100 mu m cavity width at room temperature. The observed spectrum is single mode with a very narrow linewidth. Far-field profile has nearly diffraction limited single lobe with full width at half maximum of 3.5 degrees normal to the facet. The mode selection and power output relationships are experimentally established with respect to different cavity lengths for photonic crystal distributed feedback quantum cascade lasers.
引用
收藏
页数:7
相关论文
共 9 条
[1]   Electrically pumped photonic crystal distributed feedback quantum cascade lasers [J].
Bai, Y. ;
Darvish, S. R. ;
Slivken, S. ;
Sung, P. ;
Nguyen, J. ;
Evans, A. ;
Zhang, W. ;
Razeghi, M. .
APPLIED PHYSICS LETTERS, 2007, 91 (14)
[2]   Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency [J].
Bai, Y. ;
Slivken, S. ;
Darvish, S. R. ;
Razeghi, M. .
APPLIED PHYSICS LETTERS, 2008, 93 (02)
[3]  
BAI Y, 2008, APPL PHYS LETT, V95, P31105
[4]   Quantum cascade lasers: Ultrahigh-Speed operation, optical wireless communication, narrow linewidth, and far-infrared emission [J].
Capasso, F ;
Paiella, R ;
Martini, R ;
Colombelli, R ;
Gmachl, C ;
Myers, TL ;
Taubman, MS ;
Williams, RM ;
Bethea, CG ;
Unterrainer, K ;
Hwang, HY ;
Sivco, DL ;
Cho, AY ;
Sergent, AM ;
Liu, HC ;
Whittaker, EA .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2002, 38 (06) :511-532
[5]   Holographic fabricated photonic-crystal distributed-feedback quantum cascade laser with near-diffraction-limited beam quality [J].
Lu, Quan-Yong ;
Zhang, Wei ;
Wang, Li-Jun ;
Liu, Jun-Qi ;
Li, Lu ;
Liu, Feng-Qi ;
Wang, Zhan-Guo .
OPTICS EXPRESS, 2009, 17 (21) :18900-18905
[6]   Spectral properties of angled-grating high-power semiconductor lasers [J].
Sarangan, AM ;
Wright, MW ;
Marciante, JR ;
Bossert, DJ .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1999, 35 (08) :1220-1230
[7]   Photonic-crystal distributed-feedback quantum cascade lasers [J].
Vurgaftman, I ;
Meyer, JR .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2002, 38 (06) :592-602
[8]   High-power, room-temperature, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ∼4.8 μm -: art. no. 041104 [J].
Yu, JS ;
Slivken, S ;
Darvish, SR ;
Evans, A ;
Gokden, B ;
Razeghi, M .
APPLIED PHYSICS LETTERS, 2005, 87 (04)
[9]   Modal gain analysis of transverse Bragg resonance waveguide lasers with and without transverse defects [J].
Zhu, Lin ;
Scherer, Axel ;
Yariv, Amnon .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2007, 43 (9-10) :934-940