Analytical and empirical fluctuation functions of the EEG microstate random walk - Short-range vs. long-range correlations

被引:27
作者
von Wegner, F. [1 ,2 ,3 ]
Tagliazucchi, E. [2 ,3 ,4 ]
Brodbeck, V. [2 ,3 ]
Laufs, H. [2 ,3 ,4 ]
机构
[1] Goethe Univ Frankfurt, Epilepsy Ctr Rhein Main, Schleusenweg 2-16, D-60528 Frankfurt, Germany
[2] Goethe Univ Frankfurt, Dept Neurol, Schleusenweg 2-16, D-60528 Frankfurt, Germany
[3] Goethe Univ Frankfurt, Brain Imaging Ctr, Schleusenweg 2-16, D-60528 Frankfurt, Germany
[4] Univ Hosp Kiel, Dept Neurol, Schittenhelmstr 10, D-24105 Kiel, Germany
关键词
EEG; Resting state; Microstates; Markov process; Scaling; Long-range correlations; Hurst parameter; TEMPORAL CORRELATIONS; SCALING BEHAVIOR; STOCHASTIC-MODEL; MAP SERIES; QUANTIFICATION; SEGMENTATION; EXPONENTS; DIFFUSION; HUMANS; MARKOV;
D O I
10.1016/j.neuroimage.2016.07.050
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We analyze temporal autocorrelations and the scaling behaviour of EEG microstate sequences during wakeful rest. We use the recently introduced random walk approach and compute its fluctuation function analytically under the null hypothesis of a short-range correlated, first-order Markov process. The empirical fluctuation function and the Hurst parameter H as a surrogate parameter of long-range correlations are computed from 32 resting state EEG recordings and for a set of first-order Markov surrogate data sets with equilibrium distribution and transition matrices identical to the empirical data. In order to distinguish short-range correlations (H approximate to 0.5) from previously reported long-range correlations (H > 0.5) statistically, confidence intervals for H and the fluctuation functions are constructed under the null hypothesis. Comparing three different estimation methods for H, we find that only one data set consistently shows H > 0.5, compatible with long-range correlations, whereas the majority of experimental data sets cannot be consistently distinguished from Markovian scaling behaviour. Our analysis suggests that the scaling behaviour of resting state EEG microstate sequences, though markedly different from uncorrelated, zero-order Markov processes, can often not be distinguished from a short-range correlated, first-order Markov process. Our results do not prove the microstate process to be Markovian, but challenge the approach to parametrize resting state EEG by single parameter models. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:442 / 451
页数:10
相关论文
共 45 条
[1]  
Abry P., 2002, WAVELETS ANAL ESTIMA, P39
[2]  
[Anonymous], 1994, STAT LONG MEMORY PRO
[3]   Markov processes, Hurst exponents, and nonlinear diffusion equations: With application to finance [J].
Bassler, Kevin E. ;
Gunaratne, Gemunu H. ;
McCauley, Joseph L. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 369 (02) :343-353
[4]  
Beran J., 1992, Statistical Science, V7, P404, DOI 10.1214/ss/1177011122
[5]   BOLD correlates of EEG topography reveal rapid resting-state network dynamics [J].
Britz, Juliane ;
Van De Ville, Dimitri ;
Michel, Christoph M. .
NEUROIMAGE, 2010, 52 (04) :1162-1170
[6]   EEG microstates of wakefulness and NREM sleep [J].
Brodbeck, Verena ;
Kuhn, Alena ;
von Wegner, Frederic ;
Morzelewski, Astrid ;
Tagliazucchi, Enzo ;
Borisov, Sergey ;
Michel, Christoph M. ;
Laufs, Helmut .
NEUROIMAGE, 2012, 62 (03) :2129-2139
[7]   Spatiotemporal Analysis of Multichannel EEG: CARTOOL [J].
Brunet, Denis ;
Murray, Micah M. ;
Michel, Christoph M. .
COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2011, 2011
[8]  
Feller W., 1968, INTRO PROBABILITY TH
[9]   A field-theoretic approach to understanding scale-free neocortical dynamics [J].
Freeman, WJ .
BIOLOGICAL CYBERNETICS, 2005, 92 (06) :350-359
[10]  
Freeman WJ, 1975, MASS ACTION NERVOUS