机构:
Univ Sydney, Sydney Math Res Inst, Quadrangle, Camperdown, NSW 2006, AustraliaUniv Sydney, Sydney Math Res Inst, Quadrangle, Camperdown, NSW 2006, Australia
Cliff, Emily
[1
]
Nevins, Thomas
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Dept Math, Urbana, IL 61801 USAUniv Sydney, Sydney Math Res Inst, Quadrangle, Camperdown, NSW 2006, Australia
Nevins, Thomas
[2
]
Shen, Shiyu
论文数: 0引用数: 0
h-index: 0
机构:
Univ Toronto, Dept Math, Bahen Ctr, 40 St George St, Toronto, ON M5S 2E4, CanadaUniv Sydney, Sydney Math Res Inst, Quadrangle, Camperdown, NSW 2006, Australia
Shen, Shiyu
[3
]
机构:
[1] Univ Sydney, Sydney Math Res Inst, Quadrangle, Camperdown, NSW 2006, Australia
[2] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[3] Univ Toronto, Dept Math, Bahen Ctr, 40 St George St, Toronto, ON M5S 2E4, Canada
Let C be a smooth complex projective curve and G a connected complex reductive group. We prove that if the center Z (G) of G is disconnected, then the Kirwan map H* (Bun(G,C), Q) -> H* (MTHiggsss (G, C), Q) from the cohomology of the moduli stack of all G-bundles to the moduli stack of semistable G-Higgs bundles, cannot be surjective. We establish similar results for intersection cohomology and for the cohomology of the coarse moduli spaces. The proof uses a Borel-Quillen-style localization result for equivariant cohomology of stacks to reduce to an explicit calculation.