Software Modernization Using Machine Learning Techniques

被引:1
|
作者
Somogyi, Norbert [1 ]
Kovesdan, Gabor [1 ]
机构
[1] Budapest Univ Technol & Econ, Dept Automat & Appl Informat, Budapest, Hungary
来源
2021 IEEE 19TH WORLD SYMPOSIUM ON APPLIED MACHINE INTELLIGENCE AND INFORMATICS (SAMI 2021) | 2021年
关键词
code modernization; static analysis; machine learning;
D O I
10.1109/SAMI50585.2021.9378659
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As software engineering techniques and practices continuously evolve, programs created with an older technology stack become harder and more costly to maintain. These software are often referred to as legacy code. Naturally, the need arises to make use of the newer and more effective technologies, making the legacy code easier to maintain and operate. However, companies rarely allocate the necessary resources to manually re-implement these systems as that would be highly time-consuming and extremely costly to spend exclusively for maintenance purposes. Thus, various code modernization approaches have been proposed and tools have been created to reduce the cost of re-implementation by semi-automatically translating legacy systems into a modern, more advantageous environment. However, the source and target languages may be so different in nature that making the generated code feel as natural as possible is often difficult. These linguistic differences frequently impose the emulation of certain features between the two languages, which may prove too difficult to automatically handle using conventional static analysis of the source code. To this end, in this paper we propose the novel method of using machine learning techniques to teach the transformer on how to effectively handle cases that would otherwise be very error-prone in practice. This way, the transformation tool can achieve both a high level of automation and the ability to generate precise, error free code.
引用
收藏
页码:361 / 365
页数:5
相关论文
共 50 条
  • [1] Predicting Software Anomalies using Machine Learning Techniques
    Alonso, Javier
    Belanche, Lluis
    Avresky, Dimiter R.
    2011 10TH IEEE INTERNATIONAL SYMPOSIUM ON NETWORK COMPUTING AND APPLICATIONS (NCA), 2011,
  • [2] Software reliability prediction using machine learning techniques
    Jaiswal A.
    Malhotra R.
    International Journal of System Assurance Engineering and Management, 2018, 9 (1) : 230 - 244
  • [3] Analysis of Software Vulnerabilities Using Machine Learning Techniques
    Diako, Doffou Jerome
    Achiepo, Odilon Yapo M.
    Mensah, Edoete Patrice
    E-INFRASTRUCTURE AND E-SERVICES FOR DEVELOPING COUNTRIES (AFRICOMM 2019), 2020, 311 : 30 - 37
  • [4] ON THE PREDICTABILITY OF SOFTWARE EFFORTS USING MACHINE LEARNING TECHNIQUES
    Zhang, Wen
    Yang, Ye
    Wang, Qing
    ENASE 2011: PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON EVALUATION OF NOVEL APPROACHES TO SOFTWARE ENGINEERING, 2011, : 5 - 14
  • [5] Software Effort Estimation using Machine Learning Techniques
    Monika
    Sangwan, Om Prakash
    PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE AND ENGINEERING (CONFLUENCE 2017), 2017, : 92 - 98
  • [6] Software Effort Estimation using Machine Learning Techniques
    Shivhare, Jyoti
    Rath, Santanu Ku.
    PROCEEDINGS OF THE 7TH INDIA SOFTWARE ENGINEERING CONFERENCE 2014, ISEC '14, 2014,
  • [7] Software defect identification using machine learning techniques
    Ceylan, Evren
    Kudubay, F. Onur
    Bener, Ayse B.
    32ND EUROMICRO CONFERENCE ON SOFTWARE ENGINEERING AND ADVANCED APPLICATIONS (SEAA) - PROCEEDINGS, 2006, : 240 - +
  • [8] IMPROVING SOFTWARE RELIABILITY MODELING USING MACHINE LEARNING TECHNIQUES
    Zou, Fengzhong
    Davis, Joseph
    INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING, 2008, 18 (07) : 965 - 986
  • [9] Software Design Pattern Recognition using Machine Learning Techniques
    Dwivedi, Ashish Kumar
    Tirkey, Anand
    Ray, Ransingh Biswajit
    Rath, Santanu Kumar
    PROCEEDINGS OF THE 2016 IEEE REGION 10 CONFERENCE (TENCON), 2016, : 222 - 227
  • [10] Predicting Software Effort Estimation Using Machine Learning Techniques
    BaniMustafa, Ahmed
    2018 8TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY (CSIT), 2018, : 249 - 256