Giant Casimir Torque between Rotated Gratings and the θ=0 Anomaly

被引:31
作者
Antezza, Mauro [1 ,2 ]
Chan, H. B. [3 ,4 ]
Guizal, Brahim [1 ]
Marachevsky, Valery N. [5 ]
Messina, Riccardo [1 ,6 ]
Wang, Mingkang [4 ,7 ]
机构
[1] Univ Montpellier, CNRS, UMR 5221, L2C, F-34095 Montpellier, France
[2] Inst Univ France, 1 Rue Descartes, F-75231 Paris 05, France
[3] Hong Kong Univ Sci & Technol, Ctr Metamat Res, Dept Phys, Kowloon, Clear Water Bay, Hong Kong, Peoples R China
[4] Hong Kong Univ Sci & Technol, William Mong Inst Nano Sci & Technol, Kowloon, Clear Water Bay, Hong Kong, Peoples R China
[5] St Petersburg State Univ, 7-9 Univ Skaya Naberezhnaya, St Petersburg 199034, Russia
[6] Univ Paris Saclay, CNRS, UMR 8501, Inst Opt,Lab Charles Fabry, 2 Ave Augustin Fresnel, F-91127 Palaiseau, France
[7] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Clear Water Bay, Hong Kong, Peoples R China
关键词
FORCES; REFORMULATION;
D O I
10.1103/PhysRevLett.124.013903
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the Casimir torque between two metallic one-dimensional gratings rotated by an angle theta with respect to each other. We find that, for infinitely extended gratings, the Casimir energy is anomalously discontinuous at theta = 0, due to a critical zero-order geometric transition between a 2D- and a 1D-periodic system. This transition is a peculiarity of the grating geometry and does not exist for intrinsically anisotropic materials. As a remarkable practical consequence, for finite-size gratings, the torque per area can reach extremely large values, increasing without bounds with the size of the system. We show that for finite gratings with only ten period repetitions, the maximum torque is already 60 times larger than the one predicted in the case of infinite gratings. These findings pave the way to the design of a contactless quantum vacuum torsional spring, with possible relevance to micro- and nanomechanical devices.
引用
收藏
页数:6
相关论文
共 55 条
  • [1] [Anonymous], 1998, HDB OPTICAL CONSTANT
  • [2] Casimir-Lifshitz force out of thermal equilibrium
    Antezza, Mauro
    Pitaevskii, Lev P.
    Stringari, Sandro
    Svetovoy, Vitaly B.
    [J]. PHYSICAL REVIEW A, 2008, 77 (02):
  • [3] Demonstration of Angle-Dependent Casimir Force between Corrugations
    Banishev, A. A.
    Wagner, J.
    Emig, T.
    Zandi, R.
    Mohideen, U.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (25)
  • [4] Casimir Force on a Surface with Shallow Nanoscale Corrugations: Geometry and Finite Conductivity Effects
    Bao, Y.
    Guerout, R.
    Lussange, J.
    Lambrecht, A.
    Cirelli, R. A.
    Klemens, F.
    Mansfield, W. M.
    Pai, C. S.
    Chan, H. B.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 105 (25)
  • [5] Barash Yu. S., 1978, Radiophysics and Quantum Electronics, V21, P1138, DOI 10.1007/BF02121382
  • [6] Probing Atom-Surface Interactions by Diffraction of Bose-Einstein Condensates
    Bender, Helmar
    Stehle, Christian
    Zimmermann, Claus
    Slama, Sebastian
    Fiedler, Johannes
    Scheel, Stefan
    Buhmann, Stefan Yoshi
    Marachevsky, Valery N.
    [J]. PHYSICAL REVIEW X, 2014, 4 (01):
  • [7] Buhmann S. Y., 2012, DISPERSION FORCES, VI
  • [8] Impact of anisotropy on the interaction of an atom with a one-dimensional nano-grating
    Buhmann, Stefan Yoshi
    Marachevsky, Valery N.
    Scheel, Stefan
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2016, 31 (2-3):
  • [9] Casimir forces and quantum electrodynamical torques: Physics and nanomechanics
    Capasso, Federico
    Munday, Jeremy N.
    Iannuzzi, Davide
    Chan, H. B.
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2007, 13 (02) : 400 - 414
  • [10] Casimir H., 1948, P K NED AKAD WETENSC, V51, P793, DOI DOI 10.4236/WJNSE.2015.52007