Comparison of tokamak behaviour with tungsten and low-Z plasma facing materials

被引:52
|
作者
Philipps, V [1 ]
Neu, R
Rapp, J
Samm, U
Tokar, M
Tanabe, T
Rubel, M
机构
[1] Forschungszentrum Julich, Inst Plasmaphys, D-52425 Julich, Germany
[2] Nagoya Univ, Ctr Integrated Res, Nagoya, Aichi, Japan
[3] Royal Inst Technol, Alfven Lab, SE-10044 Stockholm, Sweden
[4] EURATOM, Max Planck Inst Plasmaphys, D-85748 Garching, Germany
关键词
D O I
10.1088/0741-3335/42/12B/322
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Graphite wall materials are used in present day fusion devices in order to optimize plasma core performance and to enable access to a large operational space. A large physics database exists for operation with these plasma facing materials, which also indicate their use in future devices with extended burn times. The radiation from carbon impurities in the edge and divertor regions strongly helps to reduce the peak power loads on the strike areas, but carbon radiation also supports the formation of MARFE instabilities which can hinder access to high densities. The main concerns with graphite are associated with its strong chemical affinity to hydrogen, which leads to chemical erosion and to the formation of hydrogen-rich carbon layers. These layers can store a significant fraction of the total tritium fuel, which might prevent the use of these materials in future tritium devices. High-Z plasma facing materials are much more advantageous in this sense, but these advantages compete with the strong poisoning of the plasma if they enter the plasma core. New promising experiences have been obtained with high-Z wall materials in several devices, about which a survey is given in this paper and which also addresses open questions for future research and development work.
引用
收藏
页码:B293 / B310
页数:18
相关论文
共 50 条
  • [1] Tritium retention in neutron-irradiated low-Z materials for use as plasma facing materials
    Scaffidi-Argentina, F
    Sand, C
    Wu, CH
    JOURNAL OF NUCLEAR MATERIALS, 2001, 290 : 211 - 215
  • [2] Potential of nanocrystalline low-Z materials for plasma facing, structural applications in fusion reactors
    Vassen, R
    Kaiser, A
    Stover, D
    JOURNAL OF NUCLEAR MATERIALS, 1996, 233 : 708 - 712
  • [3] Potential of nanocrystalline low-Z materials for plasma facing, structural applications in fusion reactors
    Vassen, R.
    Kaiser, A.
    Stover, D.
    Journal of Nuclear Materials, 1996, 233-237 (Pt A): : 708 - 712
  • [4] PROGRESS OF RESEARCH-AND-DEVELOPMENT ACTIVITIES ON PLASMA FACING LOW-Z MATERIALS AND COMPONENTS FOR NET
    BOLT, H
    BUDD, M
    CARDELLA, A
    SHAW, B
    VIEIDER, G
    WU, C
    ZOLTI, E
    FUSION ENGINEERING AND DESIGN, 1991, 15 (01) : 5 - 15
  • [5] LOW-Z IMPURITIES IN PLT TOKAMAK
    HINNOV, E
    SUCKEWER, S
    BOL, K
    HAWRYLUK, RJ
    HOSEA, J
    MESERVEY, E
    PLASMA PHYSICS AND CONTROLLED FUSION, 1978, 20 (08) : 723 - 734
  • [6] Linear microstability analysis of a low-Z impurity doped tokamak plasma
    Romanelli, M.
    Szepesi, G.
    Peeters, A. G.
    Apicella, M. L.
    Marinucci, M.
    Mazzotta, C.
    Mazzitelli, G.
    Frigione, D.
    NUCLEAR FUSION, 2011, 51 (10)
  • [7] SPUTTERING OF LOW-Z MATERIALS
    ROTH, J
    ECKSTEIN, W
    GAUTHIER, E
    LASZLO, J
    JOURNAL OF NUCLEAR MATERIALS, 1991, 179 : 34 - 36
  • [8] LOW-Z IMPURITY CONTROL OF TOKAMAK DISCHARGES
    TAYLOR, RJ
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1977, 22 (09): : 1124 - 1124
  • [9] The scattering of muons in low-Z materials
    Attwood, D.
    Bell, P.
    Bull, S.
    McMahon, T.
    Wilson, J.
    Fernow, R.
    Gruber, P.
    Jamdagm, A.
    Long, K.
    McKigney, E.
    Savage, P.
    Curtis-Rouse, M.
    Edgecock, T. R.
    Ellis, M.
    Lidbury, J.
    Murray, W.
    Norton, P.
    Peach, K.
    Ishida, K.
    Matsuda, Y.
    Nagamine, K.
    Nakamura, S.
    Marshall, G. M.
    Benveniste, S.
    Cline, D.
    Fukui, Y.
    Lee, K.
    Pischalnikov, Y.
    Holmes, S.
    Bogacz, A.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2006, 251 (01): : 41 - 55
  • [10] PHYSICAL SPUTTERING OF LOW-Z MATERIALS
    GAUTHIER, E
    ECKSTEIN, W
    LASZLO, J
    ROTH, J
    JOURNAL OF NUCLEAR MATERIALS, 1990, 176 : 438 - 444