A novel stochastic fractal search algorithm with fitness-Distance balance for global numerical optimization

被引:80
作者
Aras, Sefa [1 ]
Gedikli, Eyup [1 ]
Kahraman, Hamdi Tolga [1 ]
机构
[1] Karadeniz Tech Univ, Fac Technol, Dept Software Engn, Trabzon, Turkey
关键词
FDB Selection method; Stochastic fractal search; FDBSFS Algorithm; Meta-heuristic optimization; Exploitation-exploration balance; BEE COLONY ALGORITHM; SINE COSINE ALGORITHM; PARTICLE SWARM OPTIMIZATION; SYMBIOTIC ORGANISMS SEARCH; DIFFERENTIAL EVOLUTION; LEVY FLIGHT; GENETIC ALGORITHMS; MUTATION; DESIGN; SOLVE;
D O I
10.1016/j.swevo.2020.100821
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Stochastic Fractal Search (SFS) is a new and original meta-heuristic search (MHS) algorithm with strong founda-tions. As with many other MHS methods, there are problems in effectively balancing the exploitation-exploration in the SFS algorithm. In order to achieve this balance, it is necessary to improve its diversity capability. This ar-ticle presents the studies that were carried out to strengthen the diversity and balanced search capabilities of the SFS algorithm. For this purpose, the diversity operator of the SFS algorithm was designed with a novel method called Fitness-Distance Balance (FDB), which more effectively mimics the way fractals occur in nature. Thus, the FDBSFS algorithm, which has a much stronger search performance, was developed. Comprehensive experimen-tal studies were conducted to test and validate the developed FDB-based SFS algorithm (FDBSFS). Thirty-nine novel and powerful MHS algorithms, eighty-nine unconstrained test functions and five constrained engineering problems were used. Two nonparametric tests, the Wilcoxon signed rank test and the Friedman test, were used to analyze the results obtained from the experimental studies. The results of the analysis showed that the prob-lem of premature convergence had been largely eliminated by the application of the FDB method and that the exploitation-exploration balance was also effectively provided. Moreover, the proposed FDBSFS algorithm ranked first among the thirty-nine competing algorithms.
引用
收藏
页数:25
相关论文
共 111 条
  • [1] Electromagnetic field optimization: A physics-inspired metaheuristic optimization algorithm
    Abedinpourshotorban, Hosein
    Shamsuddin, Siti Mariyam
    Beheshti, Zahra
    Jawawi, Dayang N. A.
    [J]. SWARM AND EVOLUTIONARY COMPUTATION, 2016, 26 : 8 - 22
  • [2] A balanced fuzzy Cultural Algorithm with a modified Levy flight search for real parameter optimization
    Ali, Mostafa Z.
    Awad, Noor H.
    Reynolds, Robert G.
    Suganthan, Ponnuthurai N.
    [J]. INFORMATION SCIENCES, 2018, 447 : 12 - 35
  • [3] AEFA: Artificial electric field algorithm for global optimization
    Anita
    Yadav, Anupam
    [J]. SWARM AND EVOLUTIONARY COMPUTATION, 2019, 48 : 93 - 108
  • [4] Butterfly optimization algorithm: a novel approach for global optimization
    Arora, Sankalap
    Singh, Satvir
    [J]. SOFT COMPUTING, 2019, 23 (03) : 715 - 734
  • [5] A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm
    Askarzadeh, Alireza
    [J]. COMPUTERS & STRUCTURES, 2016, 169 : 1 - 12
  • [6] Awad NH, 2016, TECHNICAL REPORT
  • [7] Awad NH, 2017, IEEE C EVOL COMPUTAT, P372, DOI 10.1109/CEC.2017.7969336
  • [8] An effective refined artificial bee colony algorithm for numerical optimisation
    Bajer, Drazen
    Zoric, Bruno
    [J]. INFORMATION SCIENCES, 2019, 504 : 221 - 275
  • [9] Stability analysis of Artificial Bee Colony optimization algorithm
    Bansal, Jagdish Chand
    Gopal, Anshul
    Nagar, Atulya K.
    [J]. SWARM AND EVOLUTIONARY COMPUTATION, 2018, 41 : 9 - 19
  • [10] Defining a standard for particle swarm optimization
    Bratton, Daniel
    Kennedy, James
    [J]. 2007 IEEE SWARM INTELLIGENCE SYMPOSIUM, 2007, : 120 - +