SnSe nanocrystals decorated on carbon nanotubes for high-performance lithium-ion battery anodes

被引:26
作者
Jin, Aihua [1 ]
Chae, Sue In [2 ,3 ]
Park, Jae-Hyuk [2 ,3 ]
Kim, Shin-Yeong [2 ,3 ]
Lee, Sanghwa [2 ,3 ]
Chang, Hogeun [2 ,3 ]
Kim, Jeong Hyun [2 ]
Um, Ji Hyun [1 ]
Yu, Seung-Ho [1 ]
Hyeon, Taeghwan [2 ,3 ]
Sung, Yung-Eun [2 ,3 ]
机构
[1] Korea Univ, Dept Chem & Biol Engn, Seoul 02841, South Korea
[2] Inst Basic Sci IBS, Ctr Nanoparticle Res, Seoul 08826, South Korea
[3] Seoul Natl Univ, Sch Chem & Biol Engn, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
Tin selenide; Carbon nanotubes; Nanocomposites; Lithium-ion battery; operando X-ray diffraction; SOLUTION-PHASE SYNTHESIS; X-RAY-DIFFRACTION; SODIUM-ION; COMPOSITE ANODES; LI; NANOSHEETS; NANOMATERIALS; TEMPERATURE; ELECTRODES; THICKNESS;
D O I
10.1016/j.jallcom.2021.162057
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Tin selenide has been considered as one of the most promising anode materials for lithium-ion battery owing to its high theoretical capacity. In this work, a facile colloidal synthetic method was successfully used to obtain nanocomposites comprising similar to 7 nm SnSe nanocrystals and carbon nanotubes (SnSe NC/CNT). When applied as anode materials in lithium-ion battery, the SnSe NC/CNT nanocomposites exhibited excellent electrochemical performance with a reversible capacity of 706.5 mAh g(-1) after 300 cycles at a constant current density of 200 mA g(-1). The SnSe NC/CNT nanocomposites also delivered the high reversible capacity of 532.0 mAh g(-1) at a high current density of 1.0 A g(-1). The SnSe nanocomposites are advantageous to the ion and electron transport. Interconnected by CNT after annealing at 200 degrees C, SnSe NC/CNT nano composites can accommodate the volume expansion even after 300 cycles. The complex conversion and alloying reaction are studied by X-ray diffraction and X-ray absorption near edge structure. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 52 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   MECHANISM OF HIGH-TEMPERATURE OXIDATION OF TIN SELENIDE [J].
BADRINARAYANAN, S ;
MANDALE, AB ;
GUNJIKAR, VG ;
SINHA, APB .
JOURNAL OF MATERIALS SCIENCE, 1986, 21 (09) :3333-3338
[3]   SnSe Nanocrystals: Synthesis, Structure, Optical Properties, and Surface Chemistry [J].
Baumgardner, William J. ;
Choi, Joshua J. ;
Lim, Yee-Fun ;
Hanrath, Tobias .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (28) :9519-9521
[4]   IR AND RAMAN-SPECTRA OF 4-6 COMPOUNDS SNS AND SNSE [J].
CHANDRASEKHAR, HR ;
HUMPHREYS, RG ;
ZWICK, U ;
CARDONA, M .
PHYSICAL REVIEW B, 1977, 15 (04) :2177-2183
[5]   SnO2-Based Nanomaterials: Synthesis and Application in Lithium-Ion Batteries [J].
Chen, Jun Song ;
Lou, Xiong Wen .
SMALL, 2013, 9 (11) :1877-1893
[6]   A combined Mossbauer spectroscopy and x-ray diffraction operando study of Sn-based composite anode materials for Li-ion accumulators [J].
Conte, Donato E. ;
Mouyane, Mohamed ;
Stievano, Lorenzo ;
Fraisse, Bernard ;
Sougrati, Moulay T. ;
Olivier-Fourcade, Josette ;
Willmann, Patrick ;
Jordy, Christian ;
Artus, Mathieu ;
Cassaignon, Sophie ;
Driezen, K. ;
Jumas, Jean-Claude .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2012, 16 (12) :3837-3848
[7]   Surface Oxidation of Tin Chalcogenide Nanocrystals Revealed by 119Sn-Mossbauer Spectroscopy [J].
de Kergommeaux, Antoine ;
Faure-Vincent, Jerome ;
Pron, Adam ;
de Bettignies, Remi ;
Malaman, Bernard ;
Reiss, Peter .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (28) :11659-11666
[8]   Nanostructured Sn-C composite as an advanced anode material in high-performance lithium-ion batteries [J].
Derrien, Gaelle ;
Hassoun, Jusef ;
Panero, Stefania ;
Scrosati, Bruno .
ADVANCED MATERIALS, 2007, 19 (17) :2336-+
[9]   Challenges in the development of advanced Li-ion batteries: a review [J].
Etacheri, Vinodkumar ;
Marom, Rotem ;
Elazari, Ran ;
Salitra, Gregory ;
Aurbach, Doron .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) :3243-3262
[10]   Solution-Phase Synthesis of SnSe Nanocrystals for Use in Solar Cells [J].
Franzman, Matthew A. ;
Schlenker, Cody W. ;
Thompson, Mark E. ;
Brutchey, Richard L. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (12) :4060-+