The Surface Cell Cooling Coefficient: A Standard to Define Heat Rejection from Lithium Ion Battery Pouch Cells

被引:33
作者
Hales, Alastair [1 ]
Marzook, Mohamed Waseem [1 ]
Diaz, Laura Bravo [1 ]
Patel, Yatish [1 ]
Offer, Gregory [1 ,2 ]
机构
[1] Imperial Coll London, Dept Mech Engn, London SW7 2AZ, England
[2] Harwell Sci & Innovat Campus, Quad One, Faraday Inst, Didcot, Oxon, England
基金
芬兰科学院; “创新英国”项目; 英国工程与自然科学研究理事会;
关键词
GENERAL ENERGY-BALANCE; THERMAL MANAGEMENT; TEMPERATURE RISE; POWER; MODEL; BEHAVIOR; SYSTEM; ISSUES; TAB;
D O I
10.1149/1945-7111/ab6985
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
There is no universal and quantifiable standard to compare a given cell model's capability to reject heat. The consequence of this is suboptimal cell designs because cell manufacturers do not have a metric to optimise. The Cell Cooling Coefficient for pouch cell tab cooling (CCCtabs) defines a cell's capability to reject heat from its tabs. However, surface cooling remains the thermal management approach of choice for automotive and other high-power applications. This study introduces a surface Cell Cooling Coefficient, CCCsurf which is shown to be a fundamental property of a lithium-ion cell. CCCsurf is found to be considerably larger than CCCtabs, and this is a trend anticipated for every pouch cell currently commercially available. However, surface cooling induces layer-to-layer nonuniformity which is strongly linked to reduced cell performance and reduced cell lifetime. Thus, the Cell Cooling Coefficient enables quantitative comparison of each cooling method. Further, a method is presented for using the Cell Cooling Coefficients to inform the optimal design of a battery pack thermal management system. In this manner, implementation of the Cell Cooling Coefficient can transform the industry, by minimising the requirement for computationally expensive modelling or time consuming experiments in the early stages of battery-pack design. (C) 2020 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited.
引用
收藏
页数:12
相关论文
共 51 条
[1]   A Critical Review of Thermal Issues in Lithium-Ion Batteries [J].
Bandhauer, Todd M. ;
Garimella, Srinivas ;
Fuller, Thomas F. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (03) :R1-R25
[2]   Predicting heat generation in a lithium-ion pouch cell through thermography and the lumped capacitance model [J].
Bazinski, S. J. ;
Wang, X. .
JOURNAL OF POWER SOURCES, 2016, 305 :97-105
[3]   A GENERAL ENERGY-BALANCE FOR BATTERY SYSTEMS [J].
BERNARDI, D ;
PAWLIKOWSKI, E ;
NEWMAN, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1985, 132 (01) :5-12
[4]   Comparison of different cooling methods for lithium ion battery cells [J].
Chen, Dafen ;
Jiang, Jiuchun ;
Kim, Gi-Heon ;
Yang, Chuanbo ;
Pesaran, Ahmad .
APPLIED THERMAL ENGINEERING, 2016, 94 :846-854
[5]   Effects of different coolants and cooling strategies on the cooling performance of the power lithium ion battery system: A review [J].
Deng, Yuanwang ;
Feng, Changling ;
E, Jiaqiang ;
Zhu, Hao ;
Chen, Jingwei ;
Wen, Ming ;
Yin, Huichun .
APPLIED THERMAL ENGINEERING, 2018, 142 :10-29
[6]   Measurement of anisotropic thermophysical properties of cylindrical Li-ion cells [J].
Drake, S. J. ;
Wetz, D. A. ;
Ostanek, J. K. ;
Miller, S. P. ;
Heinzel, J. M. ;
Jain, A. .
JOURNAL OF POWER SOURCES, 2014, 252 :298-304
[7]   An investigation of irreversible heat generation in lithium ion batteries based on a thermo-electrochemical coupling method [J].
Du, Shuanglong ;
Lai, Yanqing ;
Ai, Liang ;
Ai, Lihua ;
Cheng, Yun ;
Tang, Yiwei ;
Jia, Ming .
APPLIED THERMAL ENGINEERING, 2017, 121 :501-510
[8]   Parameterization of a Physico-Chemical Model of a Lithium-Ion Battery I. Determination of Parameters [J].
Ecker, Madeleine ;
Tran, Thi Kim Dung ;
Dechent, Philipp ;
Kaebitz, Stefan ;
Warnecke, Alexander ;
Sauer, Dirk Uwe .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (09) :A1836-A1848
[9]   Thermal runaway mechanism of lithium ion battery for electric vehicles: A review [J].
Feng, Xuning ;
Ouyang, Minggao ;
Liu, Xiang ;
Lu, Languang ;
Xia, Yong ;
He, Xiangming .
ENERGY STORAGE MATERIALS, 2018, 10 :246-267
[10]   Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry [J].
Feng, Xuning ;
Fang, Mou ;
He, Xiangming ;
Ouyang, Minggao ;
Lu, Languang ;
Wang, Hao ;
Zhang, Mingxuan .
JOURNAL OF POWER SOURCES, 2014, 255 :294-301