The conditions for relative equilibria and their stability in the Full Two Body Problem are derived for an ellipsoid-sphere system. Under constant angular momentum it is found that at most two solutions exist for the long-axis solutions with the closer solution being unstable while the other one is stable. As the non-equilibrium problem is more common in nature, we look at periodic orbits in the F2BP close to the relative equilibrium conditions. Families of periodic orbits can be computed where the minimum energy state of one family is the relative equilibrium state. We give results on the relative equilibria, periodic orbits and dynamics that may allow transition from the unstable configuration to a stable one via energy dissipation.