17β-Estradiol regulates oxidative stress in prostate cancer cell lines according to ERalpha/ERbeta ratio

被引:34
作者
Miro, A. M. [2 ]
Sastre-Serra, J. [2 ]
Pons, D. G. [2 ]
Valle, A. [2 ]
Roca, P. [2 ]
Oliver, J. [1 ,2 ]
机构
[1] Univ Illes Balears, Dept Biol Fonamental & Ciencies Salut, E-07122 Palma de Mallorca, Illes Balears, Spain
[2] IUNICS, Grp Multidisciplinar Oncol Traslac, Palma de Mallorca, Illes Balears, Spain
关键词
Estrogen receptor; Oxidative stress; Prostate cancer; 17; beta-Estradiol; Uncoupling proteins; ESTROGEN-RECEPTOR-BETA; ER-BETA; PROGESTERONE-RECEPTOR; EXPRESSION; ALPHA; TISSUE; PHYTOESTROGENS; STATISTICS; BINDING; BENIGN;
D O I
10.1016/j.jsbmb.2010.12.004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Estrogen action is mediated by the two receptor isoforms: estrogen receptor alpha and beta. Both receptors are expressed in human prostate tissue and have different action profiles. ERalpha is positively correlated with the malignancy of prostate cancer, while ERbeta may protect against abnormal prostate cell growth. 17 beta-Estradiol (E2), at least in part, induces cancerous transformations by causing deleterious mutations through the formation of reactive oxygen species (ROS). The aim was to study the effect of E2 on oxidative stress and the expression of uncoupling proteins (UCPs) and antioxidant enzymes in several prostate cancer cell lines with different ERalpha/ERbeta ratios. The cell prostate lines with a lower ERalpha/ERbeta ratio had lower oxidative stress, which could be partially explained by the increased expression of antioxidant enzymes and UCPs. Moreover, the action of E2 on the expression of antioxidant enzymes and UCPs was dual and dependent on the ERalpha/ERbeta ratio. Treatments with 0.1 nM E2 in cell lines with high ERalpha/ERbeta ratio produced a decrease in antioxidant enzymes and UCPs levels, with an increase in ROS production. These effects disappeared when the treatment was done in the presence of an ERalpha antagonist (MPP). In the cell lines with greatest levels of ERbeta and the lowest ERalpha/ERbeta ratio, E2 treatment caused the up-regulation of antioxidant enzymes and UCPs with a look-up decrease in ROS production. These effects were reversed when the cells were treated with E2 in the presence of an ERbeta antagonist (R,R-THC). On the whole, our results suggest a dual E2 effect: increasing or decreasing oxidative stress in part by modulation of UCPs and antioxidant enzymes according to the abundance ERbeta and ERalpha/ERbeta ratio in prostate cancer cell lines. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:133 / 139
页数:7
相关论文
共 33 条
[1]   International trends in prostate-cancer mortality: the decrease is continuing and spreading [J].
Baade, PD ;
Coory, MD ;
Aitken, JF .
CANCER CAUSES & CONTROL, 2004, 15 (03) :237-241
[2]   Estrogen receptor expression in prostate cancer and premalignant prostatic lesions [J].
Bonkhoff, H ;
Fixemer, T ;
Hunsicker, I ;
Remberger, K .
AMERICAN JOURNAL OF PATHOLOGY, 1999, 155 (02) :641-647
[3]   17β-oestradiol up-regulates longevity-related, antioxidant enzyme expression via the ERK1 and ERK2[MAPK]/NFκB cascade [J].
Borrás, C ;
Gambini, J ;
Gómez-Cabrera, MC ;
Sastre, J ;
Pallardó, FV ;
Mann, GE ;
Viña, J .
AGING CELL, 2005, 4 (03) :113-118
[4]   Characterization of redox state of two human prostate carcinoma cell lines with different degrees of aggressiveness [J].
Chaiswing, Luksana ;
Bourdeau-Heller, Jeanne M. ;
Zhong, Weixiong ;
Oberley, Terry D. .
FREE RADICAL BIOLOGY AND MEDICINE, 2007, 43 (02) :202-215
[5]  
Chang WY, 1999, PROSTATE, V40, P115
[6]   Influence of cellular ERα/ERβ ratio on the ERα-agonist induced proliferation of human T47D breast cancer cells [J].
Covaleda, Ana M. Sotoca ;
Van den Berg, Hans ;
Vervoort, Jacques ;
Van der Saag, Paul ;
Strom, Anders ;
Gustafsson, Jan-Ake ;
Rietjens, Ivonne ;
Murk, Albertinka J. .
TOXICOLOGICAL SCIENCES, 2008, 105 (02) :303-311
[7]   Sex-dependent differences in aged rat brain mitochondrial function and oxidative stress [J].
Guevara, Rocio ;
Santandreu, Francisca M. ;
Valle, Adamo ;
Gianotti, Magdalena ;
Oliver, Jordi ;
Roca, Pilar .
FREE RADICAL BIOLOGY AND MEDICINE, 2009, 46 (02) :169-175
[8]   Oxidative stress and cancer: have we moved forward? [J].
Halliwell, Barry .
BIOCHEMICAL JOURNAL, 2007, 401 (1-11) :1-11
[9]   Estrogen receptor beta in breast cancer-Diagnostic and therapeutic implications [J].
Hartman, Johan ;
Strom, Anders ;
Gustafsson, Jan-Ake .
STEROIDS, 2009, 74 (08) :635-641
[10]  
Horvath LG, 2001, CANCER RES, V61, P5331