Persistence of lower dimensional invariant tori on sub-manifolds in Hamiltonian systems

被引:3
|
作者
Liu, ZX [1 ]
机构
[1] Jilin Univ, Sch Math, Changchun 130012, Peoples R China
关键词
Hamiltonian system; lower dimensional invariant tori; persistence on sub-manifolds; KAM theorem;
D O I
10.1016/j.na.2005.01.106
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Chow et al. (J. Non. Sci. 12 (2002) 585) proved that the majority of the unperturbed tori on submanifolds will persist for standard Hamiltonian systems. Motivated by their work, in this paper, we study the persistence and tangent frequencies preservation of lower dimensional invariant tori on smooth sub-manifolds for real analytic, nearly integrable Hamiltonian systems. The surviving tori might be elliptic, hyperbolic, or of mixed type. © 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1319 / 1342
页数:24
相关论文
共 50 条
  • [41] Invariant Tori in Hamiltonian Systems with High Order Proper Degeneracy
    Yuecai Han
    Yong Li
    Yingfei Yi
    Annales Henri Poincaré, 2010, 10 : 1419 - 1436
  • [42] Homoclinic orbits for invariant tori of nearly integrable Hamiltonian systems
    Koltsova, O. Yu.
    Lerman, L. M.
    Delshams, A.
    Gutierrez, P.
    DOKLADY MATHEMATICS, 2006, 73 (02) : 217 - 220
  • [43] Invariant hyperbolic tori for Hamiltonian systems with Russmann nondegeneracy conditions
    Cong, FZ
    Li, Y
    Jin, DJ
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1999, 29 (03) : 831 - 851
  • [44] Numerical invariant tori of symplectic integrators for integrable Hamiltonian systems
    Ding, Zhaodong
    Shang, Zaijiu
    SCIENCE CHINA-MATHEMATICS, 2018, 61 (09) : 1567 - 1588
  • [45] Homoclinic orbits for invariant tori of nearly integrable Hamiltonian systems
    O. Yu. Koltsova
    L. M. Lerman
    A. Delshams
    P. Gutiérrez
    Doklady Mathematics, 2006, 73 : 217 - 220
  • [46] Corrigendum for the paper “Invariant tori for nearly integrable Hamiltonian systems with degeneracy”
    Junxiang Xu
    Jiangong You
    Mathematische Zeitschrift, 2007, 257 : 939 - 939
  • [47] Lower dimensional invariant tori with prescribed frequency for the nonlinear Schrodinger equation
    Ren, Xiufang
    Geng, Jiansheng
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 92 : 30 - 46
  • [48] Nilpotent flows of S1-invariant Hamiltonian systems on 4-dimensional symplectic manifolds
    A. M. Samoilenko
    I. O. Parasyuk
    Ukrainian Mathematical Journal, 1997, 49 (1) : 135 - 155
  • [49] Persistence of Multiscale Degenerate Invariant Tori in Reversible Systems with Degenerate Frequency Mapping
    Yang, Xiaomei
    Xu, Junxiang
    REGULAR & CHAOTIC DYNAMICS, 2024, 29 (04) : 605 - 619
  • [50] Lower dimension tori of general types in multi-scale Hamiltonian systems
    Xu, Lu
    Yi, Yingfei
    NONLINEARITY, 2019, 32 (06) : 2226 - 2245