Persistence of lower dimensional invariant tori on sub-manifolds in Hamiltonian systems

被引:3
作者
Liu, ZX [1 ]
机构
[1] Jilin Univ, Sch Math, Changchun 130012, Peoples R China
关键词
Hamiltonian system; lower dimensional invariant tori; persistence on sub-manifolds; KAM theorem;
D O I
10.1016/j.na.2005.01.106
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Chow et al. (J. Non. Sci. 12 (2002) 585) proved that the majority of the unperturbed tori on submanifolds will persist for standard Hamiltonian systems. Motivated by their work, in this paper, we study the persistence and tangent frequencies preservation of lower dimensional invariant tori on smooth sub-manifolds for real analytic, nearly integrable Hamiltonian systems. The surviving tori might be elliptic, hyperbolic, or of mixed type. © 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1319 / 1342
页数:24
相关论文
共 16 条
[1]  
Arnold V. I, 1963, Russian Mathematical Surveys, V18, P13, DOI DOI 10.1070/RM1963V018N05ABEH004130
[2]   Persistence of invariant tori on submanifolds in Hamiltonian systems [J].
Chow, SN ;
Li, Y ;
Yi, Y .
JOURNAL OF NONLINEAR SCIENCE, 2002, 12 (06) :585-617
[3]  
Eliasson L. H., 1988, ANN SC NORM SUPER S, V15, P115
[4]   CONSERVATION OF HYPERBOLIC INVARIANT TORI FOR HAMILTONIAN SYSTEMS [J].
GRAFF, SM .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1974, 15 (01) :1-69
[5]  
Kolmogorov A. N., 1954, Dokl. Akad. Nauk SSSR, V98, P527, DOI DOI 10.1007/BFB0021737
[6]   HAMILTONIAN PERTURBATIONS OF INFINITE-DIMENSIONAL LINEAR-SYSTEMS WITH AN IMAGINARY SPECTRUM [J].
KUKSIN, SB .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1987, 21 (03) :192-205
[7]   Persistence of hyperbolic tori in Hamiltonian systems [J].
Li, Y ;
Yi, YF .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 208 (02) :344-387
[8]   Persistence of invariant tori in generalized Hamiltonian systems [J].
Li, Y ;
Yi, YF .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2002, 22 :1233-1261
[9]  
Melnikov V., 1965, Sov. Math. Dokl., V6, P1592
[10]   CONVERGENT SERIES EXPANSIONS FOR QUASI-PERIODIC MOTIONS [J].
MOSER, J .
MATHEMATISCHE ANNALEN, 1967, 169 (01) :136-&