Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains

被引:383
作者
Nagai, T [1 ]
机构
[1] Hiroshima Univ, Grad Sch Sci, Dept Math, Higashihiroshima 7398526, Japan
关键词
parabolic-elliptic system; chemotaxis; finite-time blowup;
D O I
10.1155/S1025583401000042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the initial-boundary value problem of parabolic-elliptic systems on bounded domains in R-2 with smooth boundary which is a mathematical model of chemotaxis. Making a differential inequality on the moment of solutions to the problem, we show the finite-time blowup of nonradial solutions under some condition on the mass and the moment of the initial data.
引用
收藏
页码:37 / 55
页数:19
相关论文
共 29 条
[1]  
Biler P., 1994, Colloq. Math, V66, P319
[2]  
Biler P., 1995, Colloq. Math, V68, P229
[3]  
Biler P., 1998, Adv. Math. Sci. Appl., V8, P715
[4]   NON-LINEAR ASPECTS OF CHEMOTAXIS [J].
CHILDRESS, S ;
PERCUS, JK .
MATHEMATICAL BIOSCIENCES, 1981, 56 (3-4) :217-237
[5]  
Childress S., 1984, Modelling of Patterns in Space and Time, P61
[6]  
Diaz J. I., 1995, Adv. Math. Sci. Appl, V5, P659
[7]   Symmetrization techniques on unbounded domains:: Application to a chemotaxis system on RN [J].
Diaz, JI ;
Nagai, T ;
Rakotoson, JM .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 145 (01) :156-183
[8]   Global behaviour of a reaction-diffusion system modelling chemotaxis [J].
Gajewski, H ;
Zacharias, K .
MATHEMATISCHE NACHRICHTEN, 1998, 195 :77-114
[9]   ON THE BASIC EQUATIONS FOR CARRIER TRANSPORT IN SEMICONDUCTORS [J].
GAJEWSKI, H ;
GROGER, K .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1986, 113 (01) :12-35
[10]  
Garabedian PR., 1964, Partial Differential Equations