Dynamics for β-shifts and Diophantine approximation

被引:35
作者
Adamczewski, Boris [1 ]
Bugeaud, Yann [2 ]
机构
[1] Univ Lyon 1, CNRS, Inst Camille Jordan, F-69622 Villeurbanne, France
[2] Univ Strasbourg 1, UFR Math, F-67084 Strasbourg, France
关键词
D O I
10.1017/S0143385707000223
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the beta-expansion of an algebraic number in an algebraic base. Using tools from Diophantine approximation, we prove several results that may suggest a strong difference between the asymptotic behaviour of eventually periodic expansions and that of non-eventually periodic expansions.
引用
收藏
页码:1695 / 1711
页数:17
相关论文
共 39 条
[1]   On the complexity of algebraic numbers. [J].
Adamczewski, B ;
Bugeaud, Y ;
Luca, F .
COMPTES RENDUS MATHEMATIQUE, 2004, 339 (01) :11-14
[2]  
ADAMCZEWSKI B, IN PRESS SOME COMPUT
[3]   On the complexity of algebraic numbers I. Expansions in integer bases [J].
Adamczewski, Boris ;
Bugeaud, Yann .
ANNALS OF MATHEMATICS, 2007, 165 (02) :547-565
[4]   On the complexity of algebraic numbers, II. Continued fractions [J].
Adamczewski, Boris ;
Bugeaud, Yann .
ACTA MATHEMATICA, 2005, 195 (01) :1-20
[5]  
Allouche J.-P., 2003, Automatic Sequences: Theory, Applications, Generalizations
[6]   The Komornik-Loreti constant is transcendental [J].
Allouche, JP ;
Cosnard, M .
AMERICAN MATHEMATICAL MONTHLY, 2000, 107 (05) :448-449
[7]  
[Anonymous], 1995, INTRO DIOPHANTINE AP
[8]   On the random character of fundamental constant expansions [J].
Bailey, DH ;
Crandall, RE .
EXPERIMENTAL MATHEMATICS, 2001, 10 (02) :175-190
[9]  
BERNAT J, 2005, THESIS U MEDITERRANC
[10]  
Berthe V., 2005, INTEGERS, V5, P46